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Objective: Obesity and decreased physical health are linked to deficits in several cognitive domains. The broad range of cognitive
problems linked to obesity suggests a global mechanism that may interfere with multiple neural systems. We examined how variation in
body mass index (BMI) is associated with the microstructural integrity of fiber connections in the human brain. Methods: White
matter structure was measured using diffusion tensor imaging in 28 participants (mean age = 30 years) with BMI scores ranging from
normal weight to obese (19.5Y45.7 kg/m2) based on standard BMI criteria. Results: Using a whole-brain voxelwise analysis, we found
that, across participants, the fractional anisotropy of white matter voxels parametrically decreased with increasing BMI (63% of white
matter voxels). Midbrain and brainstem tracts were among the pathways most strongly associated with obesity (r = j0.18 to j0.33,
df = 27, all p values G .05). We also observed aweaker overall diffusion signal in individuals with higher BMI than controls with normal
weight (r =j0.14 toj0.71, df = 27, for 67% of fiber pathways tested, all p values G .05). After controlling for this decrease in general
diffusivity, we found that decreases in fractional anisotropy stemmed from both a decrease in axial diffusivity ( p G .05) and an increase
in radial diffusivity ( p G .05). Conclusions: Our results show that increased BMI is globally associated with a reduction in white
matter integrity throughout the brain, elucidating a potential mechanism by which changes in physical health may influence cognitive
health. Key words: DTI, white matter, fractional anisotropy, body mass index, obesity.

DTI = diffusion tensor imaging; FA = fractional anisotropy; ADC =
apparent diffusion coefficient; L|| = axial diffusivity; L6 = radial
diffusivity; BMI = body mass index; MRI = magnetic resonance
imaging; ROI = region of interest.

INTRODUCTION

More than a third of the US population is obese (1), and
although this decrease in general physical health is usu-

ally not considered when assessing cognitive functions, a
growing body of evidence suggests that increased obesity is
associated with a variety of cognitive impairments. For exam-
ple, obese individuals exhibit decreased inhibitory control
(2Y4), working memory (5), and executive control (6) as
compared with otherwise healthy individuals. This reduction in
cognitive abilities seems to be at least partially linked to car-
diovascular health because improving physical health with
aerobic exercise improves performance in a variety of cognitive
domains such as inhibitory control, spatial memory, and task
switching (7). Even in otherwise healthy adults, increased body
mass index (BMI), a common quantification of general physical
health, is associated with poorer performance on executive
function tasks such as the Trail-Making Test and Stroop task (8).

This emerging evidence associating increased BMI with
impairments in a variety of cognitive domains suggests a global
mechanism by which physical health is related to altered neural
functioning. However, most brain imaging studies examining
the link between BMI and structural (e.g., gray matter volume)
or functional (e.g., task-evoked responses) brain outcomes have
focused on isolated cortical areas (9Y18). One candidate
mechanism by which increased BMI may be associated with
neural processing is through the white matter that connects
multiple brain regions. In this way, the local changes in the
functional activity of cortical areas may be caused by funda-
mental changes in the axons that connect these regions. Indeed,
it has recently been shown that increased BMI is associated
with decreased white matter integrity in isolated sections of the
corpus callosum and fornix fibers (16,19), with the former
pathway being the principal interhemispheric connection for
most major cortical areas.

The present study explores how increased BMI is associated
with variation in the microstructure of white matter throughout
the brain. Diffusion tensor imaging (DTI) was used to charac-
terize the structure of white matter in a group of neurologically
healthy individuals across the BMI spectrum. Using a whole-
brain voxelwise regression approach, we set out to characterize
how variation in BMI relates to the underlying fiber architecture
across a distributed range of neural pathways.

MATERIALS AND METHODS
Participants
Neurologically healthy adults (N = 28; 17 females; mean age = 30 years; age

range, 18Y69 years) were recruited from the local Pittsburgh area. All partici-
pants were screened for contraindications to magnetic resonance imaging (MRI)
and reported having no neurological conditions including prior head surgery,
tumors, stroke, or disease (e.g., Parkinson disease, multiple sclerosis). Imme-
diately before scanning, each participant’s BMI was determined by taking their
height (H; in inches) and weight (W; in pounds) using a calibrated scale at the
imaging facility and performing the following calculation:

BMI ¼ ðW # 703Þ=H2: ðEq:1Þ;
A BMI value between 18.5 and 24.9 kg/m2 indicates normal weight, be-

tween 25 and 29.9 kg/m2 indicates overweight, and higher than 30 kg/m2
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indicates obesity. These categories are used only for reference to standard cri-
teria for obesity because BMI was used as a continuous variable in all data
analyses reported here.

All testing was approved by the local institutional review board at the
University of Pittsburgh. Written informed consent was obtained from all
participants before experimentation.

Imaging Acquisition and Processing
Participants were scanned using a Siemens Allegra 3T MRI (Siemens Inc)

located at the Brain Imaging Research Center at the University of Pittsburgh.
White matter imaging was performed using a 50-direction DTI sequence
(2.5-mm isotropic voxels; 40 slices; repetition time, 5500 milliseconds; echo
time, 98 milliseconds; b = 1000 s/mm2). Each image is sensitive to the motion
of underlying water molecules in a particular direction along a three-dimensional
(3D) sphere. These are then used to estimate the structure of underlying water
diffusion (see the next section). We also collected five b0 images that measure
nondirectional water diffusion nested in the series to estimate head motion
throughout the scan. This was followed by a structural T1 sequence (Magnetiza-
tion Prepared Rapid Acquisition with Gradient Echo acquisition; 1-mm isotropic
voxels; 256 slices; repetition time, 1400 milliseconds; echo time, 25 milliseconds)
for anatomic comparisons.

All image data were reconstructed from k-space using in-house software
and saved into the NIfTI image format (http://nifti.nimh.nih.gov/). It is well
known that artifacts from eddy current (electric currents generated within the
magnetic field due to parameters in the image acquisition process) and head
motion can influence the quality of data on an individual participant basis (20).
For both cases, rather than run correction algorithms, which can introduce un-
necessary noise into the signal, we set up exclusion criteria for individuals who
either presented with strong eddy-current artifacts (expressed as a white ring
around the edge of the image and time-varying distortion across images) or head
motion. A blind and independent observer, trained to identify eddy-current and
fat signal artifacts, visually inspected each participant’s data. No eddy-current
artifacts were present; however, this is not surprising given the speed of the gra-
dients in the 3T Allegra scanner and the relatively low b-value used. Two parti-
cipants (one with normal weight and the other who is overweight) contained
detectible fat saturation artifacts that were visually determined to have minimal
influence on overall results; therefore, they were included in the final analysis. For
head motion, we estimated the translation and rotation movement components
of five b0 images nested in the scan series (Images 1, 14, 27, 40, and 53) using
standard motion estimation routines in SPM8 (Wellcome Trust Centre for Neu-
roimaging, London, UK). An exclusion criterion was set whereby if a
participant’s head translated more than a single voxel in any given direction or
was rotated more than 1 degree, then they would be excluded from analysis. No
participant met these criteria (maximum translation, 1.63 mm; maximum rota-
tion, 0.86 degree); therefore, all participants were included in the final analysis.

Initial reconstruction and analysis of the DTI data were performed with
the standard diffusion tensor model using the Diffusion Toolkit software
(http://trackvis.org/dtk/). This process estimates the eigenvalues (L1, L2, and L3)
for water diffusion in each voxel along three orthogonal directions. The first
eigenvalue (L1) reflects the strongest degree of directional diffusion. The next two
eigenvalues (L2 and L3) estimate the diffusion in the plane orthogonal to the first
component. From these values, we could then calculate three standard measures
of white matter integrity: fractional anisotropy (FA), axial diffusivity (L||), and
radial diffusivity (L6). These were calculated as follows:

FA ¼
ffiffiffi
3
2

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL1j L̂Þ2 þ ðL2j L̂Þ2 þ ðL3j L̂Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L21 þ L22 þ L23

q ðEq:2Þ;

L¬ ¼ L1 ðEq:3Þ;

L6 ¼ ðL2 þ L3Þ=2 ðEq:4Þ:
where L̂ is the trace of the eigenvalues, also known as the mean diffusivity.
Figure 1 shows a graphical illustration of what each measure represents. FA is
the most common white matter measure from DTI and represents the shape of the
underlying water diffusion in each voxel (Fig. 1). Because barriers, such as the

walls of axons, restrictwater movement, its diffusion becomes more anisotropic.
An FA value of 0 indicates perfectly spherical diffusion (i.e., no axons),
whereas an FA value of 1 indicates water that moves in a perfect line (i.e., all
water is contained in a single set of axons). In this way, larger FA values
are assumed to reflect greater density and volume of underlying white matter.
However, there are multiple ways in which FA may decrease. First, diffusion
along the principal axon direction might drop, resulting in a corresponding
reduction in L||. Second, diffusivity in the orthogonal direction could increase,
reflected as an increase in L6. Variation in diffusion along the axial or radial
diffusion plane reflects different types of changes to underlying axon structure
(see Discussion). These values can also change independently of the degree
of overall water diffusion (e.g., L̂), which is independent of the overall shape
of the underlying diffusion patterns. In the Diffusion Toolkit, FA is estimated
using an ordinary least squares regression model. Along with the diffusion
vectors, the Diffusion Toolkit also returns the apparent diffusion coefficient
(ADC), which we used in subsequent analysis. ADC is a more traditional
estimate of the energy of water diffusion and highly correlates with L̂. Given
the normalized nature of the FA calculation, changes in the overall degree
of water diffusion (i.e., ADC) should have minimal impact on resulting voxel
values; however, when assessing component changes in L|| and L6, global
changes in ADC may significantly bias the resulting output. Therefore, ADC
was used as both a secondary, global measure of white matter integrity and a
control factor for exploring component changes in underlying water diffusion
(see the next section).

For each participant, these measures of diffusivity were recorded for every
voxel within the brain and then transformed into Montreal Neurological Insti-
tute template space using a nonlinear normalization routine in SPM8 (Inter-
national Consortium for Brain Mapping space template regularization,
16 nonlinear iterations, 1-mm3 FA Montreal Neurological Institute template;
FMRIB58_FA_1mm.nii) based on each participant’s FA map. A second align-
ment step was then performed using an affine linear registration method to
manually adjust each participant’s normalized FA map to the group mean FA
map. For this, all maps were thresholded at an FA of more than 0.2. This second
registration step has been found to minimize cross-participant variance because
of the suboptimal nature of the normalization process for diffusion imaging
data (21). We then applied this registration to other statistical maps (i.e., L||, L6,
ADC) to put all images into the same 3D space for group-level analyses. No image
scaling was performed to preserve the total amount of signal in the normalized
images because our pilot analysis found that this scaling parameter positively
correlated with BMI and thus inflated any BMI-related effects observed in the
underlying images. All normalized images were then smoothed with a 3D
gaussian kernel (full width at half maximum, 4 mm) before the data analysis
procedures described in the next section.

Data Analysis
We first set out to determine how FAvaries as a function of BMI. For this,

we identified all white matter voxels in the brain by thresholding the mean FA
map to a value of more than 0.2. At each voxel within this mask, we performed
an iterative sample-with-replacement permutation test (22). We chose to use
this ‘‘bootstrapping’’ approach, instead of traditional asymptotic methods, to

Figure 1. Modeling white matter structure with diffusion tensor imaging. Gray
tubes represent axon bundles within a given voxel. Axial diffusivity (L||) measures
the degree of water diffusion in the principal direction of these fibers. Radial
diffusivity (L6) reflects diffusion in the orthogonal plane. Fractional anisotropy (FA)
measures the relative anisotropy of waterwithin the voxel (i.e., the standard deviation
of the L|| and L6 measures).
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maximize our analytical sensitivity given the relatively small sample size.
First, the voxel FAvalues were z-scored across participants. Next, we used an
ordinary least squares regression model to remove any effects of age or sex.
The residual FA values from this regression were then correlated against the
group BMI scores using a nonparametric Spearman rank-order correlation
(rS). To estimate the probability of observing a larger correlation by chance
(i.e., P value), we repeated this process 500 times with the BMI and z-scored
FA values randomly reassigned across participants. The gray dashed line dis-
tribution in Figure 2A shows the average bootstrap-generated chance distri-
bution across all white matter voxels. A bias-corrected and accelerated bootstrap
test was used to estimate statistical significance for each voxel (23).

After the bootstrap correlation test, we identified clusters of voxels with
significant correlations between FA and BMI. For this analysis, we first applied
a threshold for all uncorrected significant voxels (rS G T0.33, p G .025).
Clusters of connected voxels within these maps were then automatically
identified using edge-based connectivity criteria (24) in SPM8. Clusters with
less than 20 connected voxels were discarded from subsequent analysis (i.e.,
k = 20). Within each remaining cluster, we identified significant voxels by
adjusting the statistical threshold to account for multiple comparisons using
a family-wise error correction (false discovery rate of 0.05 (25)). Voxels that
survived this threshold are shown in Figures 2B and D.

After whole-brain cluster analysis, we then set out to identify the specific
pathways where FAvalues correlated with BMI and to determine the underlying
nature of the FA variations. To do this, we used an established atlas of a priori,
anatomically defined white matter regions of interest (ROIs) (26). This atlas
identifies 48 segments of core white matter pathways in both hemispheres. To
simplify the analysis, we collapsed results across the hemispheres in bilateral
pathways. A list of the final 27 ROIs is shown in Table 1.

Our first pass analysis on the atlas-based ROIs used all voxels within each
region mask. For this, we determined the percentage of voxels with either a

significant negative or positive FA correlation with BMI (p G .025; one tailed,
uncorrected), the mean correlation value, and the upper and lower bounds of
a Bonferroni-corrected 95% confidence interval, determined as follows:

95% CI ¼ KT6ð1j>1=N ROIsÞR=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N Voxels

p
ðEq:5Þ:

In Equation 5, H is the mean correlation across voxels, R is the variance,
NROIs is the number of ROIs in the set (i.e., 27), Nvoxels is the number of voxels
within the ROI mask, and > = 0.05. Because of the high variance in FAvalues,
we used Grubb’s (27) test to identify outlier participants at each ROI who were
excluded from the final analysis (maximum exclusion, 2 participants).

We then identified a subset of ROIs with more than 5% of voxels having
a significant FA and BMI correlation (p G .025; one tailed, uncorrected). This
threshold is twice the expectations of random chance, that is, 2.5%. Within
each selected ROI mask, we determined the mean FA, ADC, L||, and L6 for all
suprathreshold voxels and all participants. The correlation between FA and
ADC was first estimated with a Spearman correlation coefficient. Next, the
relationship between FA and the two component diffusion parameters (L|| and
L6) was estimated using ordinary least squares regression model after con-
trolling for age, sex, and ADC. In both cases, the adjusted 95% confidence
interval of the correlation was determined as shown in Equation 5, with H = rS,
R estimated from the bootstrap distribution, and NROIs = 12. These results are
presented in Table 2.

RESULTS
BMI scores in our participant sample ranged from 19.6 to

45.7 kg/m2, with a mean (standard deviation) of 26.8 (6.5) kg/m2

(median = 24.3 kg/m2). Thus, our sample reflected a represen-
tative range of body sizes, covering the span of normal weight,

Figure 2. Global changes in white matter with body mass index (BMI) after controlling for age and sex. A, The distribution of voxel correlations between fractional
anisotropy (FA) and BMI compared with the estimated chance distribution computed using permutation statistics (black dashed line). Significant negative (blue) and
positive (red) correlations are highlighted (based on bootstrap p G .025). B, Distribution of voxels with significant negative correlations between BMI and FAwhen
controlling for age and sex. Voxels were thresholded at r G j0.33, family-wise error adjusted p G .05. C, The distribution of voxel correlations between apparent
diffusion coefficient (ADC) and BMI, after controlling for age and sex, as compared with the estimated chance distribution computed using permutation statistics
(black dashed line). Same plotting conventions as Panel A. D, Distribution of voxels with significant positive correlations between BMI and FAwhen controlling for
age and sex. Voxels were thresholded as in Panel B.
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TABLE 1. Spearman Correlations Between Body Mass Index and Fractional Anisotropy in 27 A Priori Regions of Interest From a White Matter Atlas

Region of Interest
Total No.
Voxels

Negatively Correlated
Voxels, %

Positively Correlated
Voxels, %

Total Significant
Voxels, % Mean r S

95% Confidence
Interval

Pontine crossing tract 183 32.2 1.1 33.3 j0.33 j0.35 to j0.31
Corpus callosum (genu) 1131 2.2 0.3 2.5 j0.07 j0.09 to j0.06
Corpus callosum (body) 1727 5.1 0.0 5.1 j0.12 j0.13 to j0.11
Corpus callosum (splenium) 1543 1.9 5.8 7.6 0.00 j0.02 to 0.01
Fornix (main) 81 4.9 0.0 4.9 j0.22 j0.25 to j0.18
Fornix (stria terminalis) 284 1.1 2.1 3.2 j0.10 j0.13 to j0.08
Corticospinal 339 37.2 19.8 56.9 j0.28 j0.31 to j0.25
Medial lemniscus 169 45.6 19.5 65.1 j0.31 j0.35 to j0.27
Inferior cerebellar peduncle 208 16.3 43.3 59.6 j0.18 j0.22 to j0.14
Middle cerebellar peduncle 1898 26.0 46.0 72.0 j0.18 j0.19 to j0.16
Superior cerebellar peduncle 244 12.3 9.0 21.3 j0.12 j0.17 to j0.07
Cerebral peduncle 531 17.9 1.7 19.6 j0.14 j0.18 to j0.11
Internal capsule (anterior limb) 799 7.9 0.0 7.9 j0.14 j0.15 to j0.12
Internal capsule (posterior limb) 978 4.8 0.0 4.8 j0.16 j0.18 to j0.15
Internal capsule (retrolenticular) 627 1.0 0.2 1.1 j0.06 j0.08 to j0.04
External capsule 1421 1.9 0.5 2.4 j0.08 j0.09 to j0.07
Corona radiata (anterior) 1721 2.7 0.0 2.7 j0.10 j0.11 to j0.08
Corona radiata (superior) 1844 7.7 0.1 7.8 j0.14 j0.15 to j0.13
Corona radiata (posterior) 898 2.9 0.0 2.9 j0.06 j0.07 to j0.04
Thalamic radiation (posterior) 965 3.8 0.0 3.8 j0.10 j0.11 to j0.08
Sagittal stratum 574 0.0 1.0 1.0 0.02 0.00 to 0.04
Cingulum (cingulate gyrus) 631 0.2 1.3 1.4 j0.02 j0.04 to 0.00
Cingulum (hippocampus) 284 12.3 8.5 20.8 j0.13 j0.16 to j0.09
Superior longitudinal fasciculus 1640 4.4 0.2 4.6 j0.09 j0.10 to j0.08
Superior fronto-occipital fasciculus 114 19.3 0.0 19.3 j0.27 j0.31 to j0.24
Uncinate fasciculus 96 0.0 1.0 1.0 0.07 0.05 to 0.10
Tapetum 149 0.0 0.0 0.0 0.03 0.00 to 0.06

TABLE 2. Water Diffusion Component Relationships Estimated Using a Bootstrapped Regression Method for the Regions of Interest in Table 1 With
More Than 5% of Voxels Having a Significant FA-BMI Relationship

FA and ADC FA and AD FA and RD

Region of Interest No. Voxels rS 95% Confidence Interval A 95% Confidence Interval A 95% Confidence Interval

Pontine crossing tract 59 j0.14 j0.23 to j0.05 517 305 to 729 j1584 j2318 to j850
Corpus callosum (body) 88 0.01 j0.04 to 0.07 1351 103 to 2598 j2701 j5196 to j206
Corticospinal 126 j0.18 j0.24 to j0.12 653 607 to 698 j1334 j1384 to j1285
Medial lemniscus 77 j0.34 j0.43 to j0.26 460 184 to 736 j1052 j1389 to j715
Inferior cerebellar peduncle 34 j0.38 j0.50 to j0.26 717 566 to 868 j1483 j1728 to j1238
Middle cerebellar peduncle 494 j0.45 j0.49 to j0.42 459 423 to 495 j984 j1036 to j932
Superior cerebellar peduncle 30 j0.32 j0.46 to j0.18 928 12 to 1844 j1855 j3687 to j23
Cerebral peduncle 95 j0.72 j0.80 to j0.63 402 246 to 558 j752 j1142 to j362
Internal capsule (anterior limb) 63 0.00 j0.10 to 0.10 1857 j505 to 4218 j3779 j8498 to 939
Corona radiata (superior) 142 j0.11 j0.16 to j0.06 1537 547 to 2528 j3074 j5055 to j1093
Cingulum (hippocampus) 35 0.08 j0.22 to 0.05 801 157 to 1444 j920 j1597 to j244
Superior fronto-occipital

fasciculus
22 j0.25 j0.45 to j0.06 2039 j2082 to 6159 j4077 j12318 to 4164

FA = fractional anisotropy; ADC = apparent diffusion coefficient; AD = axial diffusivity; RD = radial diffusivity.
Means and 95% confidence intervals are displayed for Spearman correlations (rS) between FA and ADC. Ordinary least squares regression, controlling for ADC, was
used to estimate the relationship between FA and both RD and AD in separate regression models. Parameter estimates (A) and 95% confidence intervals are reported.
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overweight, and obese. To ensure that our sample was large
enough to make valid statistical comparisons, we performed
a power analysis based on the effect sizes reported in a recent
study (see Table 1 in Mueller et al. (19)). Our analysis, assuming
a bivariate normal distribution, showed that a sample of 19 to
27 participants was sufficient to reliably reject a null hypothesis
with an > of 0.05. In this sample, we did not detect a significant
correlation between age and BMI (rS = 0.24, p = .12), and there
was no significant difference in BMI scores between men and
women (independent sample t G 1, df = 26, p = .52).

A voxelwise nonparametric correlation analysis between
FA and BMI, after controlling for age and sex, found that FA
was negatively correlated with BMI across most (63.3%) white
matter voxels in the brain (Fig. 2A). There was a clear distri-
bution shift from the expectations of random chance (dashed
black line in Fig. 2A). Correlations ranged fromj0.73 to 0.74,
with a mean (standard deviation) ofj0.05 (0.18) and a median
of j0.06.

Of the isolated clusters of voxels for which the correla-
tions were statistically significant (p G .025; blue and red bars
in Fig. 2A), most were negative (6.5% significant negative
correlations versus 1.6% positive). Although at first, this number
may seem small, it is important to put it into context. The number
of significant voxels negatively correlated with BMI is well
above the 2.5% expectations of chance (based on a one-tailed
p = .025). Given the number of voxels tested (80,777), this
means that 5250 voxels passed this stringent threshold, span-
ning 1050 mm3 of tissue.

After controlling for multiple comparisons, we identified se-
veral pathways with a significant negative relationship between
FA and BMI (Fig. 2B). Subcortically, the middle and superior
cerebellar peduncles showed strong BMI effects. Clusters were
also present bilaterally in the medial lemniscus regions of the
midbrain, in the infundibulum that connects the hypothalamus
to the pituitary, along portions of the anterior limb of the internal
capsule, and in perithalamic white matter. We found that several
pathways containing cortical-cortical or cortical-subcortical
projections were also negatively correlated with BMI, includ-
ing regions of the cingulum, the semioval (i.e., corona radiata),
and perihippocampal white matter in the temporal lobe.

The clusters shown in Figure 2B are labeled based on an
approximate visual identification of gross anatomic landmarks.
Based on an atlas of a priori defined anatomic ROIs (26), we
found a consistent trend for stronger negative associations
between BMI and FA (Table 1). In most cases, there were many
more voxels with significant (p G .025, one tailed) negative
correlations than positive. The percentage of voxels with sig-
nificant negative correlations was well above chance expecta-
tions in 12 pathways (shown in Table 2). However, in all but four
tracts, the mean correlation across voxels was negative, and the
adjusted 95% confidence interval of the correlation value did not
include 0. This suggests that, even in pathwayswith relatively few
suprathreshold voxels, the trend across the entire white matter
tract was for a consistently negative association with BMI.

So far, our analysis has demonstrated a consistent negative
relationship between BMI and FA across white matter pathways

in the brain. As mentioned previously, FA can decrease from
either a decrease in L|| or increase in L6. Of course, these are
not mutually exclusive possibilities, meaning that FA can also
vary because of altered diffusivity in both planes. However, we
first need to ascertain whether BMI is correlated with the
magnitude of the diffusion signal itself (i.e., the energy of
diffusion in the underlying voxels). To determine this, we used
a similar whole-brain correlation analysis to look at how ADC
correlated with changes in BMI. Similar to FA, we found that,
in white matter voxels, the ADC was generally negatively
correlated with BMI (Fig. 2C).

At first glance, this global correlation of BMI with overall
energy in the diffusion signal may also seem to explain the
relationship with FA. However, FA is a measure of shape, not
overall diffusion magnitude, and changes in overall diffusion
can occur symmetrically to all components that go into the FA
calculation, resulting in little change to the actual FA value
(Eq. 2). To get a quantitative estimate of the relationship be-
tween FA and ADC, we identified the voxels with significant
negative BMI and FA correlations within the 12 fiber tracts
with the strongest BMI effects. In 8 of 12 ROIs tested, we
found a significant negative relationship between FA and ADC
(Table 2). This suggests that the variation in the energy of the
diffusion signal is not expressed symmetrically for all com-
ponents of the FA equation.

To determine how much of the variance in the original FA
and BMI correlation is explained by ADC effects, we used a
nested regression analysis to measure how the FA-BMI rela-
tionship changes after accounting for ADC. For this analysis,
we took the average FA values from voxels in the 12 ROIs
shown in Table 2, which were negatively correlated with BMI
(p G .025, one tailed). In one regression model, we correlated
the influence of BMI, age, and sex on the average FA. We then
compared coefficients from this to those from a model that also
included ADC as a covariate. As expected, the regression co-
efficients for BMI on FA were negative in the first regression
model without controlling for ADC across the 12 ROIs tested
(j0.005 T 0.0021 [standard error]). Including the ADC term
in the second model reduced the magnitude of this BMI co-
efficient on an average of 8.06% (T12.18%) across all 12 ROIs
to a value ofj0.0036 (T0.0014). For comparison, we repeated
the second controlled regression model except with the ADC
term replaced with a random noise parameter with the same
mean and variance as the ADC values at each ROI. With this
random regressor, we observed a slight but not substantial drop
in the BMI coefficient magnitude (j0.0048 T 0.0021). Thus,
accounting for ADC generally reduced the magnitude of the
relationship between BMI and FA by 8%.

Because overall diffusivity decreased with increased BMI
and this also has an influence on the overall FA-BMI rela-
tionship, we included ADC as a covariate in our analysis to
determine whether our BMI association with FA reflected a
change in L|| or L6 or both. Table 2 shows the results of this
analysis for affected voxels in the 12 fiber pathways with the
strongest negative BMI-FA effects. After controlling for ADC,
we found that diffusivity in the axial direction was positively
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correlated with FA in all but two of the regions. In addition, we
found that FA negatively correlated with diffusivity in the ra-
dial plane for the same 10 pathways. The only two fiber tracts
that did not show this pattern were the anterior limb of the
internal capsule and the superior fronto-occipital fasciculus.
This suggests that, in most pathways, the BMI-related reduc-
tion in FA is associated with both a decrease in L|| and an in-
crease in L6. We discuss this in more detail in the next section.

Although we were more than four times more likely to see
a negative relationship between BMI and FA than a positive
correlation, there were still several clusters with strong positive
relationships (Fig. 2D; see also red section of the distribution
in Fig. 2A). These clusters were also located primarily in
subcortical and brainstem regions, particularly the middle
cerebellar peduncle and the fiber pathways near the colliculus.
In most cases, fiber tracts with a large number of significant
positive correlations also had a substantial, if not greater,
number of negatively correlated voxels (Table 1). Of the 27 ROIs
tested, only the splenium of the corpus callosum did not share
this collinear pattern. Therefore, in most regions where posi-
tive associations between BMI and FA were observed, this
relationship might be explained by the inefficiency of the
standard tensor model to resolve complex fiber crossings (28).
We discuss this in more detail in the next section.

DISCUSSION
We have shown that, in a group of otherwise neurologically

healthy adults, increased BMI is associated with a global de-
crease in the microstructural integrity of white matter path-
ways. Within the voxels correlated with BMI, we found evidence
for a multifaceted association between obesity and white matter.
Individuals with higher BMI exhibited a decrease in overall,
directionally nonspecific water diffusivity, as assessed using
the ADC. After accounting for this influence on overall dif-
fusion signal, we found that the negative BMI correlations with
FA were associated with two directionally-dependent changes
in the diffusion signal. First, FAwas positively correlated with
decreases in diffusivity along the predominant fiber direction
(i.e., L||). Second, FAwas negatively correlated with diffusivity
in the orthogonal plane to the principal fiber direction (i.e.,
L6). Taken together, our results suggest that obesity and ax-
onal integrity may have a global, whole-brain relationship that
is particularly strong in brainstem sensory and motor pathways.
Because these effects seem to originate from altered diffusivity
in the axial and radial planes, there may be multiple mecha-
nisms by which increased BMI is associated with white matter.

These findings build on a growing body of literature on
brain differences associated with increased BMI. Stanek and
colleagues (16) recently used an ROI-based approach to show
how the FA of voxels in the corpus callosum and fornix de-
creased with higher BMI. This was recently validated by a
similar analysis on tract-based white matter segments, also
focusing primarily on the corpus callosum, by Mueller and col-
leagues (19). In addition to the BMI-FA relationship, Mueller
and colleagues (19) also found a specific relationship between
decreased FA and L||, along with an increase in L6 in women

but not in men. Additional support of our findings comes from
Yau and colleagues (29), who recently reported decreased in-
tegrity of cerebral white matter in adolescents with Type 2 dia-
betes, an obesity-associated disease. In fact, obesity combined
with Type 2 diabetes is associated with elevated rates of atro-
phy of multiple brain areas (10,11,15Y17). More recently,
adults having Type 2 diabetes have been shown to have less
overall gray matter than healthy controls (30). Although we did
not test for insulin resistance in the present study, it may be a
possible mechanism for the changes in white matter integrity,
which were observed.

Our work extends on these previous findings in several ways.
First, we show how increased BMI is associated with a global
decrease in white matter integrity throughout the brain. If BMI
only related to isolated clusters or specific pathways, then the
global distribution of correlations would be slightly skewed or
contain heavy tails but with a mean overlapping the null distri-
bution. Instead, we found that the distribution of correlations had
a similar shape as what would be expected by chance (i.e., nor-
mally distributed), based on bootstrapping tests, but shifted in the
negative direction. This global expression may also explain the
heterogeneity in the location of significant negative clusters be-
tween research samples (compare our results to those reported by
Stanek et al. (16) and Mueller et al. (19)). If the mechanisms by
which obesity influences axonal structure were nonspecific, then
different samples of participants would exhibit different patterns
of significant clusters. Thus, adopting a whole-brain distribution
approach such as that shown in Figures 2A and Cmay be the best
way to compare findings across studies.

Second, we found a consistent association between BMI
and FA in subcortical brainstem pathways that were not reported
in these previous studies. The location and bilateral expression
of many of these clusters validates that these are not simply
the expression of random noise. Many of these pathways are
linked to sensory and motor functions. For example, we found
that both input (middle and inferior peduncle) and output
(superior peduncle) pathways to the cerebellum correlate with
BMI. If replicated, these findings would suggest that obese
individuals might express errors in control and coordination
of motor behaviors consistent with cerebellar dysfunction. We
also found that the integrity of a major sensory input pathway
to the primary somatosensory cortex, the medial lemniscus,
was negatively associated with increasing BMI. This suggests
that participants with high BMI may experience deficits in fine
tactile sensation, including proprioception or vibrotactile ex-
perience (see Willis (31) for review of this system). Alterna-
tively, these effects may simply reflect the consequences of
an increased sedentary life-style in obese individuals (32) rather
than the result of changes to physiological systems.

We also showed that increased BMI was associated with the
energy in the overall diffusion signal itself. Indeed, approxi-
mately 8% of the variance in the BMI-FA relationship could be
explained by a reduction in the energy of the diffusion signal.
Variations in ADC could result from differences in body tem-
perature or physiological noise in individuals with higher BMI
or might reflect true changes to underlying axonal structure.
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ADC is, in fact, often used as a measure of white matter in-
tegrity itself, and it is highly correlated with mean diffusivity,
calculated as the mean of the three eigenvectors used in the
FA calculation (see Materials and Methods). Conceptually, the
association between BMI and both FA and ADC suggests a
multifaceted relationship where both the shape and magnitude
of axonal integrity might decrease with increased obesity.
Future studies using high angular resolution imaging approa-
ches, combined with orientation diffusion function reconstruc-
tions, such as high angular resolution imaging and diffusion
spectrum imaging (see Hagmann et al. (28) for review), might
be able to dissociate these two effects on underlying white matter
structure.More importantly, however, this finding suggests that
any interpretation of DTI results in relation to obesity, which
do not include a control for changes in the diffusion signal, may
be biased or provide incomplete characterizations of neuro-
anatomic changes.

Our finding that BMI-linked variation in FAwas positively
correlated with L|| and negatively correlated with L6 is gen-
erally consistent with recent findings using a larger sample of
participants (19). Although in this earlier study, only female
participants demonstrated correlations with both changes in
axial and radial diffusions, whereas obese male participants
only exhibited changes in L||. It is likely that our limited sample
size precludes our ability to disentangle sex-related differences
in these systems. Neuroanatomically, these different signals
provide some indications as to the structure of the underlying
white matter itself. Animal models of white matter degenera-
tion have shown that decreased L|| correlates with atrophy of
axonal fibers (33Y34), whereas increased L6 corresponds to
demyelination (35Y36). This bimodal change in the shape
of the diffusion signal suggests that there are likely multiple
mechanisms contributing to the relationship between BMI and
FA. However, this relationship between FA, L||, and L6 only
holds in voxels containing uncrossed fiber tracts (e.g., corpus
callosum, internal capsule (37)). The limited resolution of the
diffusion tensor model at resolving fiber crossings means that
these presumed relationships break down in regions with more
complex fiber patterns (e.g., corona radiata, superior longitu-
dinal fasciculus). Future work should take this into account
when exploring the nature of white matter variations associa-
ted with increased obesity.

Obesity itself is associated with a range of general physi-
ological changes, including increased inflammation; changes
in glucose and insulin systems, which can result in Type 2 dia-
betes; and increases in cholesterol and hypertension (38Y39).
Therefore, it is possible that several of these physiological
comorbidities with obesity may also mediate the association
between BMI and white matter. For example, a small functional
MRI study showed that obesity was associated with reductions
in brain activity during the performance of a demanding working
memory task and that the strongest predictor of reduced activa-
tion was not higher BMI but lower insulin sensitivity (18). In
addition, inflammatory pathways have been implicated in
white matter atrophy in both humans (40) and animal models
(41) and also increase with obesity. Neuropsychological studies

have suggested that some cognitive domains supported by these
same brain areas are compromised in obesity (e.g., planning and
mental flexibility, problem solving, memory, psychomotor speed
(42Y45)). Unfortunately, because those studies have inconsis-
tently and incompletely measured both cognitive outcomes and
physiological predictors, and often use small, nonrepresentative
samples, it is not possible to draw strong conclusions about
physiological-cognitive-neurological relationships. Only further
studies, on larger sample sizes with physiological markers, can
begin to address these mechanistic questions.

Of course, cardiovascular changes could also play a critical
role in mediating the relationship between obesity and white
matter. A recent study found that increased mean arterial blood
pressure was associated with a reduction in white matter in-
tegrity, assessed using DTI, in the corpus callosum in a sample
of African American adults (38). Cortically, increased blood
pressure was also associated with a reduction in gray matter
thickness in frontal, parietal, and temporal association cortices
(46). These findings suggest that increased blood pressure
might mediate obesity-related effects on white matter and neu-
rocognitive performance. However, it should be pointed out
that the previous studies associating blood pressure with brain
morphology failed to include measures of body weight or
obesity, so this relationship has not yet been directly tested. In
addition, a more recent study found that variation in blood
pressure did not significantly mediate the relationship between
white matter changes and cognitive performance in a sample
of healthy older adults (39). However, neuroanatomic mea-
sures of hypertension (reflected as white matter signal abnor-
malities) did mediate the relationship between white matter
integrity and cognition. Despite this ambiguity on the role of
cardiovascular integrity in neurocognitive relationships, these
results suggest that future studies should include measures of
cardiovascular integrity when exploring the mediating path-
ways linking obesity to neural morphology metrics.

One potential limitation of the present study is the small
sample size used; however, we believe that this is not a sig-
nificant limitation for several reasons. First, in statistical the-
ory, sample size and effect size interact when determining the
power of any statistical inference. In a previous study, Mueller
and colleagues (19) reported correlations between BMI and FA
in the corpus callosum, depending on group and location,
which ranged from j0.779 to j0.673 (see Table 1 in Mueller
et al. (19)). A power analysis on these effect sizes indicates that
a sample size ranging from 19 to 27 participants is sufficient
to adequately reject the null hypothesis. Therefore, our sample
is not underpowered. Second, if the sample size was causing
low power in our analysis, then the likelihood of a false posi-
tive would be equal to that of a false negative. Our distribu-
tion analysis clearly shows a symmetrical distribution but with
a greater likelihood of negative correlations than positive
(Fig. 2A). This suggests that thewithin-sample noise was small
enough to allow for any underlying effects to be visible. Third,
as mentioned previously, our findings are similar to recent
reports in restricted ROIs (16,19), further validating our ob-
served effects. Finally, the use of both nonparametric and
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permutation statistics reduces the influence of outliers on the
final outcome. The conservative nature of these tests reduces
the possibility of Type I errors. Nonetheless, studies with larger
sample sizes are necessary before making conclusive argu-
ments about the impact of BMI on brain health.

Another major limitation is that we cannot determine
whether the white matter correlations with BMI are associated
with body weight changes or due to secondary disorders linked
to obesity. For example, as mentioned previously, obesity is
associated with increase prevalence of Type 2 diabetes (see
Kahn et al. (47)). It is possible that increased insulin resistance
in our overweight and obese participants may be the funda-
mental molecular mechanism that mediates changes in white
matter structure. Unfortunately, this experiment represents
a pilot study that was intended to define the scope of future
research. Therefore, ancillary measures of obesity such as
waist circumference or the hip-to-waist ratio and measures
underlying physiological systems such as inflammatory mar-
kers, cholesterol levels, or insulin and glucose levels were not
collected in this sample. Future studies should collect more
information of both physical health and physiological systems
to isolate the root mechanisms underlying the relationship
between obesity and white matter.

However, BMI can serve as a useful ‘‘umbrella’’ measure
that encompasses this broader range of underlying mecha-
nisms for both scientific and public health purposes. If a direct
relationship between BMI and white matter structure is con-
firmed, then intervention studies should be conducted to de-
termine whether reducing BMI within an individual improves
the integrity of white matter. Recently, exercise interventions
have been shown to attenuate age-related declines in both
cognitive function (48) and brain volume (49Y51). Perhaps
similar interventions would show promise in attenuating the
effect of BMI in similar cognitive and neural systems.

So far, we have worked under the presumption that certain
underlying systems linked to obesity drive changes in white
matter pathways. However, because our analysis is strictly cor-
relational in nature, it does not explicitly preclude other possible
explanations for this relationship. One possibility is that an un-
known third variable is concurrently driving both changes in
white matter and obesity, such as a genetic condition that both
decreases white matter and makes individuals more susceptible
to obesity. Another possibility is that individual differences in
baseline white matter integrity may influence behavioral patterns
and, in turn, increase obesity. For example, persons with innately
lower white matter integrity, for example in inhibitory control
pathways, may be more likely to exhibit hedonic overeating.
Given the observations that exercise interventions can preserve
other brain morphology measures (50), we believe that this in-
herent differences hypothesis is highly unlikely. However, it is
possible that changes in white matter may subsequently lead to
further increased BMI, resulting in a positive-feedback loop be-
tween white matter and obesity. Only targeted intervention
studies can determine if such cycles occur.

Nonetheless, our findings provide several important con-
tributions to the existing literature. We independently validate

the relationship between BMI and white matter integrity
reported in two recently published studies (16,19). We also
extend these findings by showing that the association of BMI
with white matter integrity is a globally distributed phenom-
enon and not limited to a select group of major white matter
pathways such as the corpus callosum. We show that indivi-
duals with high BMI have an overall weaker diffusion signal
and this accounts for part of the relationship between BMI and
FA. Finally, we demonstrate that, after accounting for this
signal difference, BMI-related FA changes are linked to changes
in both the axial and radial diffusion directions. The degree and
scope of BMI-related white matter changes and its distributed
influence throughout the brain should be of concern to both
clinical and basic science researchers alike.
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