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ABSTRACT
Objective: Physical activity (PA) is important for maintaining health throughout the lifespan. However, adherence to PA regimens is poor
with approximately 50% of older adults terminating activity intervention programs within 6 months. In this study, we tested whether gray
matter volume and white matter microstructural integrity before the initiation of a PA intervention predicts PA adherence.
Methods:One hundred fifty-nine adults aged 60 to 80 years were randomly assigned to a moderate-intensity aerobic walking condition or
a nonaerobic stretching and toning condition. Participants engaged in supervised exercise 3 times per week for 12 months. Data were col-
lected for a period of 1 year. Voxel-based morphometry and tract-based spatial statistics protocols were used to process neuroimaging data,
and ordinary least squares regression models with bootstrapping were used to analyze voxelwise neural predictors of PA adherence.
Results: Greater volume in several regions predicted greater PA adherence, including prefrontal, motor, somatosensory, temporal,
and parietal regions (p < .01). We also found that higher fractional anisotropy in several white matter tracts predicted greater PA ad-
herence (pFDR-corrected < .05), including the superior longitudinal fasciculus, anterior thalamic radiation, forceps minor, and body of
the corpus callosum.
Conclusions:These findings provide preliminary support for macro- andmicrostructural neural predictors of PA adherence andmay trans-
late to other health behaviors and behavioral goal pursuit more broadly.
Key words: adherence, gray matter, physical activity, white matter.
ATR = anterior thalamic radiation, BRAVO = Bootstrap Regres-
sion Analysis of Voxelwise Observations, DTI = diffusion tensor
imaging, FA = fractional anisotropy, FDR = false-discovery rate,
MRI = magnetic resonance imaging, PA = physical activity,
PASE = Physical Activity Scale for the Elderly, VBM = voxel-
based morphometry
INTRODUCTION

Physical activity (PA) is important for maintaining health and
well-being throughout the lifespan (1–3). However, despite

the awareness of the long-term health benefits of an active life-
style, only ~10% of adults meet recommended PA guidelines
and ~50% of people starting an exercise regimen stop within
6 months (4,5). Identifying consistent determinants of adherence
is essential for designing effective strategies, incentives, and
interventions to enhance continued participation in PA.

Research on adherence to PA has focused on contextual and
psychological factors, with little emphasis on neurobiological fac-
tors. Social-cognitive theory is the most widely used framework
for studying psychological motivations for PA adherence, of which
self-efficacy is a key construct (6,7). Self-efficacy refers to one's be-
liefs about his or her capability to successfully perform a specified
behavior (8). Indices of exercise self-efficacy have been shown to
consistently predict adherence to a PA regimen (7,9).

Importantly, self-efficacy and other social-cognitive factors
that influence PA adherence are likely to depend on the integrity
of neural networks involved in goal-directed behavior, self-
reflection, and self-regulatory capacity, although this has not yet been
tested (10–13). Furthermore, biobehavioral models of PA, including
the reflective impulsive model and temporal self-regulation
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theory, emphasize the importance of neurobiological factors for
explaining PA adherence (11,14–19). Examining structural
neural markers of PA adherence may capture the collective
variance in PA adherence explained by self-report instruments of
social-cognitive constructs (i.e., self-efficacy, self-regulation).
Recent studies, using the novel neuroimaging research method-
ology known as “brain-as-a-predictor” approach, have shown that
measures of neural structure and function can predict long-term
health and clinical outcomes, such as smoking cessation, relapse
in illicit drug use, and responsiveness to therapy in depressed
patients (20). An important assumption underlying this approach
is that neural markers serve as objective summary measures of
psychological constructs predicting behavioral outcomes. To our
knowledge, only one study has applied this brain-as-a-predictor
approach to examine whether neuroimagingmeasures of neural in-
tegrity predict PA adherence in the context of structured exercise
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programming and found that lateral prefrontal cortex volume pre-
dicts better exercise adherence among older women (21).

The aim of the present study was to replicate and extend the
findings of Best et al. (21) by applying the brain-as-a-predictor ap-
proach to examine whether markers of gray matter and white mat-
ter integrity obtained at baseline of a 12-month randomized
exercise intervention predicted better intervention adherence in
cognitively healthy older men and women. Specifically, we tested
whether (1) greater gray matter volume and (2) higher fractional
anisotropy (FA), a measure of white matter microstructural integ-
rity, predicted better PA adherence. In a sensitivity analysis, we
also tested the extent to which these markers of neural integrity
predicted additional variance in PA adherence after accounting
for exercise self-efficacy, a consistent predictor of PA adherence.
Gray matter consists of neuronal cell bodies, unmyelinated axons,
as well as glial cells and capillaries, which support neural function.
In contrast, white matter consists of long-range myelinated axons
that convey signals between various gray matter regions. We rea-
soned that graymatter volume and white matter microstructural in-
tegrity would be important markers of overall brain health in older
adults that may predict PA adherence, given that both gray matter
and white matter show age-related degeneration and have both
been linked to superior cognitive functioning in older adults
(13,14,16,22,23). Specifically, we predicted that greater gray mat-
ter volume and white matter microstructural integrity in a broad
range of regions relevant to executive function, self-regulation,
self-reflection, and PA engagement may be predictive of PA adher-
ence for the 12-month intervention; these may include prefrontal,
parietal, and motor regions.

METHODS

Participants
One hundred fifty-nine participants between the ages of 60 and 81 years
(mean [SD] age = 66.6[5.6]years) were recruited to participate in a
1-year randomized exercise intervention examining the effects of aerobic fit-
ness training on brain and cognitive health. This study was approved by the
University of Illinois Institutional Review Board. Participants were recruited
through community advertisements and physician referrals. Potential partici-
pants were initially screened over the phone for inclusion and exclusion
criteria (see hereinafter for details). Upon passing the initial phone screening,
participants were invited to a group orientation to receive study details and
ask questions regarding the program. All participants provided informed con-
sent. Three subsequent baseline sessions were performed after the group
orientation. The current study focused on the high-resolution structural an-
atomical magnetic resonance images (MPRAGE) and diffusion tensor imag-
ing (DTI) data collected at baseline before randomization to the intervention
and the exercise self-efficacy questionnaires described hereinafter.

Only a subsample (n = 105) of the original sample (N = 159) with
MPRAGE, self-efficacy, and adherence data had valid DTI data that could
be used to analyze the relationship between white matter integrity and PA
adherence. Detailed characteristics of the sample used for DTI data analysis
can be found in Oberlin and colleagues (24). The subsample used in the
DTI data analysis did not differ from the original sample on demographic
characteristics, self-efficacy, or PA adherence.

Investigations of the full sample and subsamples of this trial have also
been described in several previous articles (25–29).

Inclusion Criteria
Inclusion criteria for entry into the trial were: 60 years and older, capable of
performing physical exercise, physician consent to perform physical
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exercise, successful completion of a graded maximal exercise test, and be
physically inactive at baseline. An inactive life-style was defined as partic-
ipating in no more than one 20-minute bout of PA per week for the past
6 months.

Exclusion Criteria
Individuals with possible cognitive impairment, as indicated by a score
lower 51 on the modifiedMini-Mental Status Examination, clinical depres-
sion, as indicated by a score 2 or higher on the Geriatric Depression Scale
(GDS-5) (30), or impaired vision, as indicated by acuity greater than 20/40
were excluded from the study. In addition, participants who did not meet
safety criteria for participating in a magnetic resonance imaging (MRI)
studywere excluded from the intervention. These criteria include no history
of head trauma, head or neck surgery, diabetes, neuropsychiatric or neuro-
logical conditions including brain tumors, or having any ferrous metallic
implants that could cause injury due to the magnetic field.

Measures

Self-Efficacy
Participant's perceptions of their ability to adhere to an exercise regimen, in
the face of barriers, and to engage in PAwere assessed using the three self-
efficacy scales described hereinafter. These self-efficacy scales are com-
monly used measures of self-efficacy in the PA literature, and all have good
internal consistency (α ≥ 0.93) (9,17). All self-efficacy scales were admin-
istered to participants at the end of the third week of the exercise interven-
tion to ensure accurate assessments of efficacy judgments.

Exercise Self-Efficacy Scale
Exercise self-efficacy scale is an 8-item scale that assesses individuals' be-
lief that they can exercise at moderate intensities 3 times per week for 40+
minutes at 1-week increments over the next 8-week period. This scale is
scored on a 100-point percentage scale composed of 10-point increments,
ranging from 0% (not at all confident) to 100% (highly confident) (31).
A total scale score is derived by summing the responses to each item and
dividing by the total number of items in the scale. This measure has been
used widely in the social-cognitive literature in understanding PA and has
demonstrated outstanding internal consistency (α = .99) (32,33).

Barriers Self-Efficacy Scale
Barriers self-efficacy scale is a 13-item scale used to assess individuals' per-
ceived capabilities to exercise 3 times per week for 40 minutes for the next
2 months in the face of commonly identified barriers to participation. This
scale is scored on a 100-point percentage scale composed of 10-point incre-
ments, ranging from 0% (not at all confident) to 100% (highly confident).
Responses to each item are summed and divided by the total number of
items to achieve an overall efficacy strength score ranging from 0 to 100.
This scale has good internal consistency (α ≥ .93) (34).

Life-Style Self-Efficacy Scale
Life-style self-efficacy scale is a 12-item scale used to assess individuals'
confidence in their ability to accumulate 30 minutes of PA on 5 or more
days of the week for incremental monthly periods. The scale is scored on
a 100-point percentage scale composed of 10-point increments, 0 to 100
scale, ranging from 0% (not at all confident) to 100% (highly confident).
Responses to each item are summed and divided by the total number of
items to achieve an overall efficacy strength score ranging from 0 to 100.
The items in this scale have good internal consistency (α ≥ .95) (35).

Physical Activity Adherence
Adherence reflects the percentage of attendance at exercise classes for the
last 11 months of the intervention, given that self-efficacy (a predictor of
adherence) was assessed 3 weeks after enrolling in the intervention.
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Neural Predictors of PA Adherence
Attendance data were recorded each day by staff, aggregated, and divided
by the total possible number of sessions to calculate PA adherence.
Physical Activity Scale for the Elderly
The Physical Activity Scale for the Elderly (PASE) is a 10-item self-report
instrument designed to assess PA levels in large samples of older adults
(>65 years) for a 1-week period. The PASE combines information from
several domains including leisure, household, and occupational function-
ing. Participants indicate the frequency with which they participated in lei-
sure activities (e.g., outdoor walking; light, moderate, and strenuous sports
and recreation; muscle strengthening). The validity of the PASE has been
established by studies (36,37) showing an association between PASE
scores and several physiological performance indicators, including the fol-
lowing: a sickness impact profile score, grip and leg strength, resting heart
rate, age, peak oxygen uptake, percent body fat, and balance.
Self-Efficacy Composite Score
A composite self-efficacy score was created by standardizing and then av-
eraging the self-efficacy scores from each of the three self-efficacy scales:
exercise self-efficacy, barriers self-efficacy, and life-style self-efficacy
(9,17). The three self-efficacy scales were moderately correlated (r > .45
for all scales). See Table 1 for correlations between self-efficacy measures.
The composite self-efficacy score was the final variable included in the re-
gression models as a covariate. The composite self-efficacy score was used
as a covariate in the regression model to assess the extent to which brain
morphology predicts additional variance in PA adherence after accounting
for self-efficacy.
Structural MRI
MRI scanning was conducted before the start of the intervention. All partic-
ipants underwent structural MRI scanning on a 3 T Siemens Allegra scan-
ner. High-resolution (1.3 mm � 1.3 mm � 1.3 mm) T1-weighted brain
images were acquired using a three-dimensional magnetization-prepared
rapid gradient echo imaging protocol with 144 contiguous slices collected
in an ascending fashion.
Diffusion Tensor Imaging
Diffusion-weighted images were acquired using a 3 T Siemens Allegra
head-only scanner. The echo time was 94 milliseconds, with repetition
time of 4200 milliseconds. Twenty-eight 4-mm slices positioned ac-
cording to the AC-PC line were obtained along the anterior-posterior
commissural plane. The protocol involved a T2-weighted acquisition
followed by a 12-direction diffusion-weighted echo planar imaging
scan (b = 1000 s/mm2), which was repeated 6 times.
TABLE 1. Participant Characteristics

GM-Adherence Sample (N

M (SD)

Age, y 66.7 (5.7)

Years of education 15.8 (2.9)

Sex (%female) 66%

Exercise self-efficacy 84.1% (18.2%)

Barriers self-efficacy 72.7% (19.8%)

Life-style self-efficacy 79.0% (21.5%)

Attendance 74.9% (17.4%)

GM = gray matter; WM = white matter.
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Procedure
Participants came to the laboratory for a 2-hour baseline MRI session
within 1 month before the start of the intervention. Structural MR images
were collected during this session. During the intervention, participants re-
ported to a university recreation facility 3 times a week for 40-minute ses-
sions to either walk or participate in stretching and toning (control
condition). In the walking condition, participants started off by walking
for 10 minutes and increased walking duration by 5-minute increments
on a weekly basis until a duration of 40 minutes was achieved at week 7.
Participants walked for 40 minutes per session for the remainder of the pro-
gram. All walking was conducted on an indoor track. In the stretching con-
dition, participants engaged in muscle-toning exercises using dumbbells or
resistance bands, two exercises designed to improve balance, one yoga se-
quence, and one exercise of their choice. To keep participants interested, a
new group of exercises was introduced every 3 weeks. Three weeks after
the start of the intervention, participants were asked to complete exercise
self-efficacy questionnaires. Participants then continued to participate in
the intervention for 11 more months, at which time total adherence was
assessed as the percentage of classes attended during this period.

Analysis

MRI Data Analysis (Gray Matter Volume)
MR data were analyzed to determine the extent to which gray matter vol-
ume predicts PA adherence for the 11-month interval. MR data were proc-
essed using tools in the FMRIB Software Library (FSL) (Image Analysis Group,
FMRIB, Oxford, United Kingdom; http://www.fmrib.ox.ac.uk/fsl/; (38)).
An optimized voxel-based morphometry (VBM) protocol was used to an-
alyze structuralMRI data (FSL-VBM). An advantage ofVBM is that it per-
mits a whole-brain volumetric analysis in a semiautomated manner, making
it easy to replicate for researchers with different levels of familiarity with
neuroanatomy and does not limit analyses to particular regions of interest.
AVBM analysis computes the probability that each voxel in a structural
MR image is cerebrospinal fluid, gray matter, or white matter and yields
statistical maps for each voxel type (see the study byAshburner and Friston
(39) for a detailed description of VBMmethods). Voxels are then classified
into the structural category with the highest probability and can be statisti-
cally analyzed between individuals.

All images were processed using the following steps: (1) nonbrain mat-
ter was removed using the brain extraction technique in FSL (40). (2) All
brain-extracted images were visually inspected for any residual nonbrain
matter, and any residual matter was then manually removed from the im-
age. (3) Next, these brain-extracted images were segmented into gray mat-
ter, white matter, and cerebrospinal fluid using FSL's automated
segmentation technique (41). Values were thresholded at greater than.2 to
eliminate voxels that are of questionable tissue type. (4) Next, the partial
volume estimate maps of gray matter were registered to the Montreal
= 159) WM-Adherence Sample (n = 105)

M (SD)

66.6 (5.7)

15.2 (2.9)

63%

76.9% (21.9%)

68.8% (21.1%)

73.3% (23.4%)

74.3% (18.2%)
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Neurological Institute template (42) and followed by nonlinear registration (43)
to a study-specific template created from the 159 participants with both MRI
and self-efficacy data. (5) Each voxel of each registered gray matter image
was modulated by applying the Jacobian determinant from the transformation
matrix (44). (6) These modulated images were then concatenated into a four-
dimensional image, which was then smoothed using a 3-mm Gaussian kernel.
Statistical analyses were then conducted on these segmented, registered, modu-
lated, and smoothed graymatter images. Avoxelwise threshold of p< .01 and a
cluster-based threshold of p< .05were used to determine statistical significance
of the associations found in the regression models.

Diffusion Tensor Imaging Data Analysis

Fractional Anisotropy
Diffusion data were processed using FMRIB's Diffusion Toolbox (v.3.0;
http://fmrib.ox.ac.uk/fsl/fdt/index.html) in the FMRIB Software Library
[FSL v5.0.1], (Image Analysis Group; http://www.fmrib.ox.ac.uk/fsl/;
(38)). Voxelwise eigenvalues and eigenvectors of the diffusion tensor from
each participant's image were computed, calculating various diffusion pa-
rameters, including FA. FA is a commonly used measure of white matter
derived from DTI and represents overall anisotropy within a voxel (45).
FAvalues fall between 0 and 1, indicating the degree of microstructural or-
ganization, with higher values indicating greater directionality of diffusion.

FA data were fed into the FSL (v4.1.8) tract-based spatial statistics tool-
box (v1.2, http://www.fmrib.ox.ac.uk/fsl/tbss/index.html; (46)). Tract-
based spatial statistics toolbox is used frequently in DTI processing (46).
First, FA images were eroded to remove likely outliers. Then, FA images
were normalized to MNI152 standard space. Next, a study-specific tem-
plate was created and was used as the target for registration. To create the
study-specific template, we first registered all native-space FA images to
the FA template in Montreal Neurological Institute (MNI) space using an
affine warp and then averaged the registered images across individuals to
generate the study-specific template. Registration to the study-specific tem-
plate is conducted by combining two transformations: (1) a nonlinear trans-
formation of each individual's FA image to the study-specific template and
(2) an affine registration of the template to MNI152 standard space. After
registration, a mean FA image was computed and an average skeleton
was generated that represented major tracts common across participants.
The skeletonwas thresholded at an FAvalue of 0.2 (46) to ensure that major
white matter tracts were included. Then, to account for any residual mis-
alignments not corrected for during registration, each participant's normal-
ized FA image was projected onto the mean FA skeleton. These images
were then used in the statistical analyses described hereinafter.

Statistical Analysis

Bootstrap Regression Models
After obtaining the final voxelwise partial volume estimates of gray matter
and final FA images projected onto the mean FA skeleton, we tested the as-
sociation between gray matter volume and PA adherence and white matter
microstructural integrity and PA adherence in older adults using the
TABLE 2. Correlations Between Self-Efficacy and PA Adherence in

1 2

1. Age — −0.086 −0
2. Years of education — −0
3. Exercise self-efficacy —

4. Barriers self-efficacy

5. Life-style self-efficacy

6. Attendance

Pearson correlations (2-tailed) *p < .05, **p < .01.
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bootstrap regression tool within the Bootstrap Regression Analysis of
Voxelwise Observations (BRAVO) toolbox (47,48). Documentation and tuto-
rials for this toolbox are available at https://sites.google.com/site/
bravotoolbox. A key benefit of this toolbox is its flexibility to allow for the
use of neural data as a predictor, rather than as just an outcome variable. We
used identical regression models to test the association of gray matter volume
and white matter microstructural integrity with PA adherence. First, we tested
whether voxelwise values of gray matter volume (partial volume estimate)
and FAwould separately predict PA adherence after adjusting for age, sex, ed-
ucation, and self-reported PASE score of PA at baseline using the bootstrap per-
mutation test approach (49,50). For each regression model, 1000 permutation
tests were performed per voxel, and in each permutation test, the values in
the variable vectors (covariates, gray matter volume, and PA adherence) were
independently scrambled. The significance of the association was determined
by comparing the distribution of bootstrapped values with the distribution of
the original values using a bias-corrected and accelerated method (51).

Clusters of graymatter voxels showing significant associations with PA
adherence were identified by using a conservative voxelwise threshold of
p < .01 and a cluster-based threshold of p < .05. This approach uses random
field theory and family-wise error to correct for multiple comparisons by
determining the probability that the cluster of voxels could occur by chance
given the smoothness of the data. To determine significant associations be-
tween FA data and PA adherence, we controlled for multiple comparisons
ensexed by voxelwise testing using the false-discovery rate (FDR) method.
The FDR approach used the p value distributions from our bootstrap regres-
sionmodels and yielded a q value of 0.045. Thus, the significance threshold
for all subsequent analyses with FA data was set as pFDR < .045.

As a sensitivity analysis, a similar bootstrap permutation approachwas used
to test the significance of the association between gray matter volume/FA and
PA adherence after controlling for self-efficacy. The analysis was conducted
to test the extent to which brain-PA adherence relationships were accounted
for by self-efficacy, given that it is a key predictor of PA adherence.

RESULTS

Self-Efficacy Predicts PA Adherence
Characteristics of the 159 participants are shown in Table 1. As re-
ported in previous studies using this sample (29), exercise self-
efficacy ratings on each of the three self-efficacy scales were inde-
pendently associated with adherence (all p < .05). See Table 2 for
correlations between covariates (age and education), self-efficacy
scales, and adherence. The association between self-efficacy and
adherence did not vary by sex or years of education (all p > .05).
Age was modestly correlated with adherence (r = .16, p = .04),
such that older participants had higher attendance rates during
the intervention. Adherence rates did not significantly differ be-
tween men and women (χ2 = 144.88, p = .25). After accounting
for variance in adherence associated with age, sex, and education
in a linear regression model, a composite score of the three
Total Sample (N = 159)

3 4 5 6

.038 −0.095 0.012 0.160*

.081 −0.085 −0.069 −0.088
0.454** 0.589** 0.216**

— 0.455** 0.224**

— 0.169*

—
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Neural Predictors of PA Adherence
self-efficacy scales explained 6%of thevariance in adherence (adjusted
R2 covariates = 0.017, adjusted R2 change self-efficacy = 0.056,
β = 0.25, p = .002). The association between self-efficacy and ad-
herence did not differ by intervention group whenmodeling the in-
teraction term (walking versus stretching) (self-efficacy by group
interaction β = −0.08, p = .54). Thus, self-efficacy explains adher-
ence to the PA intervention regardless of whether the intervention
was moderate-intensity PA or stretching and toning PA. Impor-
tantly, adherence rates did not differ by intervention group.

Gray Matter Volume Predicts Adherence to the PA
Intervention
We used whole-brain voxelwise regression models with permuta-
tion testing in the BRAVO Matlab toolbox to test our hypothesis
that gray matter volume in regions supporting self-regulatory,
self-efficacy, and other executive processes would predict PA ad-
herence after adjusting for age, education, baseline PA, and sex.
Consistent with our hypothesis, greater gray matter volume in
a broad range of regions predicted PA adherence, including bi-
lateral precentral and postcentral gyrus, inferior temporal gyrus,
temporoparietal junction, and superior parietal lobule (Table 3).
After controlling for self-efficacy, volume in many of these
regions remained predictive of PA adherence, although a smaller
percentage of voxels within each region was associated with PA
adherence. After extracting partial volume estimates of regions
significantly predictive of PA adherence, we found that gray
matter volume explained 18% of variance in PA adherence, even
after accounting for self-efficacy (R2 = 0.18). See Figure 1 for a
visual comparison of gray matter regions associated with adherence
with and without adjusting for self-efficacy. The intervention group
assignment did not moderate these associations, so the interaction
term modeling group assignment was subsequently dropped
from the statistical model.

White Matter Microstructure Predicts Adherence to
the PA Intervention
A voxelwise analysis revealed that greater FA in multiple white
matter tracts predicted higher attendance rates/better adherence,
TABLE 3. Gray Matter Clusters Predicting PA Adherence

Gray Matter Region Laterality Cluster

Gray matter volume
Predicting PA adherence

Precentral/postcentral gyrus Left

Inferior temporal gyrus Right

Inferior temporal gyrus Left

Precentral/postcentral gyrus Right

Gray matter volume
Predicting PA adherence independent of SE

Inferior temporal gyrus Right

Middle frontal/precental/postcentral gyrus Left

Inferior temporal gyrus Left

PA = physical activity; COG = center of gravity.

VBM used to estimate gray matter clusters predictive of PA adherence using a voxelwise t
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even after adjusting for age, sex, baseline PA, and years of educa-
tion. Regions containing clusters predictive of PA adherence in-
cluded the body of the corpus callosum, the left forceps minor,
right external capsule, and bilateral segments of the superior longi-
tudinal fasciculus (SLF), and anterior thalamic radiation (ATR)
(pFDR-corrected < .05). Associations between adherence and FA in
the superior longitudinal fasciculus, ATR, and body of the cor-
pus callosum persisted after controlling for self-efficacy, al-
though a smaller percentage of voxels within each predicted
PA adherence. In contrast, the association between the left for-
ceps minor and PA adherence was no longer significant after in-
cluding self-efficacy in the model. Figure 2 shows the spatial
distribution of statistically significant clusters within the white
matter skeleton that predicted PA adherence both before and after
adjusting for self-efficacy (Table 4).

DISCUSSION
We tested the hypothesis that greater graymatter volume and white
matter microstructural integrity would predict better adherence to a
12-month exercise intervention in older adults. Consistent with
this prediction, greater gray matter volume in frontal, temporal,
and parietal regions was predictive of better adherence to the inter-
vention, irrespective of intervention group. Gray matter volume in
many of these regions remained predictive of adherence after ac-
counting for self-efficacy, although the percentage of voxels predic-
tive of adherence declined. Higher white matter microstructural
integrity in a wide array of tracts was also predictive of PA adher-
ence, including the body of the corpus callosum, ATR, superior
longitudinal fasiculus, and forceps minor. Most of these associa-
tions remained significant after controlling for self-efficacy.

The aim of this study was to explore whether there is a neuro-
biological basis for continued participation in PA. Although only
one previous study has examined neural predictors of PA (21), re-
cent efforts (11,52) have explored cognitive predictors of PA and
have shown that cognitive control and self-regulatory processes that
are critical for initiating andmaintaining PA are supported bywidely
distributed brain networks spanning across the frontal, temporal,
and parietal lobe (i.e., frontal-parietal network, cingulo-opercular
MNI Coordinates (COG)

Size (Voxels) Peak Z X Y Z

4563 5.03 −40 −30 52

3050 5.16 18 −42 −30
1328 3.66 −38 −2 −34
1068 3.98 50 −18 44

1383 4.7 30 −34 −30
1325 3.64 −32 −16 62

1149 3.62 −36 0 −36

hreshold p < .01, cluster threshold p < .05.
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FIGURE 1. Gray matter regions predictive of PA adherence (top row: axial slices, bottom row: 3D sagittal view). PrG = precentral gyrus,
PoG = postcentral gyrus, TPJ = temporoparietal junction, ITG = inferior temporal gyrus. Red represents GM regions predicting PA
adherence that no longer remained significant (voxelwise threshold p < .01, cluster threshold p < .05) after controlling for SE. Blue
represents GM regions that remained statistically significant (voxelwise threshold p < .01, cluster threshold p < .05) predictors of PA
adherence after controlling for SE. Regions predicting PA adherence were left lateralized (Table 3). Color image is available only in
online version (www.psychosomaticmedicine.org).
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network, and default-mode network) (see the study by Hare et al.
(11) for review). The present findings contribute to this literature
by showing that regions that predict PA adherence significantly
overlap with several networks associated with cognitive control
and self-regulatory processes.

The gray matter regions we found to predict PA adherence, in-
cluding the regions around the intraparietal sulcus, the precentral
gyrus, and lateral prefrontal cortex have been functionally linked
as part of a “multiple-demand” system by Duncan and colleagues
(53–55) through resting state and task-evoked functional MRI
studies. These studies show that these regions may collectively
represent a domain general network linked to cognitive control
FIGURE 2. White mater microstructural integrity predicts PA adher
microstructure was predictive of PA adherence before controlling f
which integrity of white matter microstructure was predictive of PA
Color image is available only in online version (www.psychosomaticm
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processes that are involved in a variety of behaviors, such as selec-
tive attention, maintenance of goals, and performance monitoring.
The overlap between our gray matter findings and previous work
identifying the multiple-demand system suggests that preservation
of gray matter in these regions may not only be particularly bene-
ficial for PA adherence but may be more broadly implicated in a
number of processes involved in behavioral goal pursuit. The at-
tenuation of some of these graymatter associations with adherence
after accounting for self-efficacy is striking, given that self-
efficacy only explained a modest amount of variance in PA adher-
ence; this pattern may suggest that the self-efficacy–PA adherence
relationship may partially mediate the relationship between gray
ence. RED represents regions in which integrity of white matter
or self-efficacy (pFDR-corrected < .05). Blue represents regions in
adherence after controlling for self-efficacy (pFDR-corrected < .05).
edicine.org).
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TABLE 4. White Matter Regions Predicting PA Adherence

MNI Coordinates (COG)

White Matter Tract Laterality Cluster Size (Voxels) Max p X Y Z

Predicting PA adherence

Posterior corona radiata Left 1564 0.999 −40 −30 52

Anterior thalamic radiation Right 1024 0.996 18 −42 −30
Anterior thalamic radiation Left 608 0.999 −33 −50 24

Body of corpus callosum Right 553 0.99 14 −10 3

Superior longitudinal fasiculus Left 550 0.998 −8 −14 8

Superior longitudinal fasiculus Left 484 0.999 −4 −9 27

Inferior fronto-occipital fasiculus Left 479 0.999 −34 2 20

Superior longitudinal fasiculus Right 466 0.998 39 −40 26

Superior longitudinal fasiculus Right 315 0.99 32 27 1

Inferior fronto-occipital fasiculus/uncinate fasiculus Right 302 0.998 39 12 15

Forceps minor Right 268 0.998 44 −9 23

Predicting PA adherence independent of SE

Superior longitudinal fasiculus Left 894 0.999 −35 −40 24

Anterior thalamic radiation Left 571 0.999 −8 −14 8

Superior longitudinal fasiculus Right 487 0.999 39 −39 25

Superior longitudinal fasiculus Right 480 0.994 43 −10 23

Superior longitudinal fasiculus Left 453 0.998 −35 −2 22

Superior longitudinal fasiculus Right 337 0.993 39 12 15

Anterior thalamic radiation/corticospinal tract Right 282 0.995 20 −9 −4

COG = center of gravity.

FSLTract-Based Spatial Statistics and BRAVO toolbox used to identify clusters of white matter regions in which FA values were predictive of adherence (pFDR = .05). Table is
limited to clusters including > 200 voxels.
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matter volume and adherence, although this needs to be tested in
future studies.

We also found that integrity of white matter microstructure in
widely distributed white matter tracts was predictive of PA adher-
ence. These regions included the temporal portion of the superior
longitudinal fasiculus, which partially overlapped with graymatter
regions we found to be predictive of PA adherence in the superior
temporal cortex (see Z = 28 in Figures 1, 2), suggesting that struc-
tural integrity of both gray matter and white matter in this region
predicts PA adherence. Other white matter tracts that we found
to predict PA adherence include the body of the corpus callosum,
which facilitates interhemispheric communication, the ATR,
which is involved in reciprocal communication of limbic re-
gions with prefrontal and anterior cingulate cortex, and the for-
ceps minor, which is involved in communication between
lateral and medial prefrontal regions. Interestingly, white matter
integrity in the forceps minor became nonsignificant after co-
varying for self-efficacy, suggesting that the self-efficacy–PA
adherence relationship may be supported by structural connec-
tivity between lateral and medial prefrontal regions, although
this needs to be further explored. Importantly, integrity of all
of these tracts is critical for the preservation of cognitive control
processes in late life (56–58). In turn, these cognitive control
processes are involved in self-regulation of a variety of goal-
directed behaviors. Similar to the gray matter findings, the
breadth of white matter tracts in which microstructural
integrity was predictive of PA suggests that these findings
may extend beyond PA to goal pursuit more generally.
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These findings also support the brain-as-a-predictor approach
to understanding real-world behavioral phenomenon (20). The
aim of this methodological approach is to leverage objective mea-
sures of neural structure and function to predict long-term, ecolog-
ically valid outcomes that extend beyond laboratory testing. The
advent of neuroimaging technology affords the possibility to link
objective neurobiological markers to behavior in a variety of do-
mains, including cognitive function, health (i.e., smoking cessa-
tion), economic decision making, and clinical and neurological
outcomes (20). Our findings contribute to this literature by show-
ing that macro- and microstructural integrity of neural architecture
in widely distributed networks predict PA adherence, many of
which support cognitive control and self-regulatory processes.

The findings from the present study have shown that older
adults with greater gray matter volume and white matter micro-
structure in regions supporting cognitive control and self-regulation
show better adherence to a yearlong structured PA intervention.
These associations were also found to be statistically indepen-
dent of randomization, such that gray matter volume and white
matter integrity were predictive of better adherence regardless of
whether participants were in the walking group or the stretching
and toning group. The implications of these associations may
also extend beyond PA adherence, to include the adoption and
maintenance of other healthy life-style behaviors that are pro-
tective against physical and cognitive health decline. In turn,
macro- and microstructural integrity in these regions may
broadly influence quality of life and participation in health be-
haviors more generally.
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Future research can extend these findings by examining the ex-
tent to which gray matter and white matter regions predictive of
adherence show PA-induced volumetric changes and whether such
brain changes positively influence cognition. This will help us un-
derstand whether the relationship between brain health and adher-
ence affects exercise-induced improvements in brain health. One
possibility is that older adults with greater gray matter atrophy
and white matter degeneration in regions supporting self-efficacy
and self-regulatory strategies may not show as much exercise-
related improvements in gray matter and white matter because of
poor adherence. To address this, interventions could be tailored
to focus on improving self-efficacy during the initial phases of
the intervention and by improving self-regulatory skills, such as
planning and goal setting. On the other hand, individuals with
greater gray matter atrophy and white matter degeneration in these
regions may show similar levels of improvement in brain health as
those with less atrophy. This could indicate that those with poorer
brain health have “more to gain” from the exercise intervention,
relative to those with better brain health. Future research can also
expand on this study by examining the relationship between struc-
tural neural markers of adherence and other psychological predic-
tors of PA adherence (i.e., self-regulatory strategies, executive
functions). Examining which cognitive variables that are most re-
lated to neural markers of PA adherence may highlight efficient
and cost-effective behavioral measures that investigators could
use to identify those participants most likely to adhere, or not ad-
here, to a long-term structured PA intervention.

Limitations and Summary
There are several limitations to the present study. First, the brain
regions identified here are related to executive function, self-
regulation, emotional control, reward, and other psychosocial,
affective, and cognitive processes, and we cannot determine the
psychological constructs that are linked both to these regions
and to adherence. Moreover, we did not account for cardiometa-
bolic risk factors that are associated with both reduced gray and
white matter integrity and sustained physical inactivity in this
study. We see the outcomes from this study as an important first
step in characterizing the neural correlates of PA adherence, but
more research is needed before definitive conclusions can be
made. Next, this was a 12-month intervention, and it is unclear
whether these same associations would occur for trials of a dif-
ferent type, duration, or intensity (e.g., resistance training). This
study was also conducted using a mostly white sample of highly
educated healthy older adults from a midwestern city; therefore,
these results may not be easily generalizable to more culturally
diverse, younger, and clinical populations. There are a number
of additional limitations related to the MRI analysis methods
used in this study. First, VBM only provides estimates of tissue
type and does not provide absolute values of volume. In addition,
the diffusion data were collected using only 12 gradient direc-
tions, which limits the precision of the tensor estimation. Further-
more, a FLAIR sequence was not run, so we could not control for
white matter hyperintensities.

In summary, we found that gray matter volume and white mat-
ter microstructural integrity in a broad range of frontal, temporal,
and parietal regions predicted adherence to a yearlong structured
PA intervention in older adults. Many of these regions support
executive control, self-regulatory processes, and voluntary motor
Psychosomatic Medicine, V 80 • 69-77 76
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function. These findings provide preliminary support for neural
substrates underlying PA adherence in the context of structured ex-
ercise programming. Future research will need to expand on these
findings by examining how these associations affect exercise-
related improvements in brain health.
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