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A B S T R A C T

Depression is a syndrome of stress- and emotion-dysregulation, involving compromised structural integrity of
frontal-limbic networks. Meta-analytic evidence indicates that volumetric reductions in the hippocampus,
anterior cingulate cortex, prefrontal cortex, striatum, and amygdala, as well as compromised white matter in-
tegrity are frequently observed in depressed adults. Exercise has shown promise as an effective treatment for
depression, but few studies have attempted to characterize or identify the neural mechanisms of these effects. In
this review, we examined the overlap between structural brain abnormalities in depression and the effects of
exercise on brain structure in adults, to highlight possible neural mechanisms that may mediate the positive
effects of exercise on depressive symptoms. The prefrontal cortex, anterior cingulate cortex, hippocampus, and
corpus callosum emerged as structural neural markers that may serve as targets for exercise-based treatments for
depression. These findings highlight the need for randomized exercise interventions to test these proposed
neurobiological mechanisms of exercise on depression.

1. Introduction

Depression is a significant global public health concern; it is the
leading cause of disability worldwide and is currently estimated to af-
fect 350 million people [1]. Depression is characterized by significant
impairment in social and occupational functioning, and the majority of
depressed individuals have recurrent episodes (~50%) [2] and/or
chronic depression (~20%) [3]. Exercise has recently shown promise as
an effective non-pharmaceutical treatment for depression [4]. A recent
Cochrane Review and meta-analysis of 35 randomized controlled trials
(N = 1356) found that exercise was moderately effective at reducing
depressive symptoms relative to a control condition in depressed adults
(Standardized mean difference (SMD) = −0.62 (95% CI: –0.81 to
–0.42)) [4]. Subgroup analyses indicated that there was no evidence for
a difference in the effectiveness of exercise relative to psychotherapy (7
trials) and pharmacotherapy (4 trials) in treating depression. A sensi-
tivity analysis (8 studies, N = 377) suggested that exercise has a small
long-term effect on depressive symptoms post-treatment (SMD –0.33,
95% CI –0.63 to −0.03). In sum, meta-analytic evidence suggests that
exercise is a promising treatment for depression in adults, showing ef-
fects that are comparable to other first-line treatments for depression
[4] (see Table 1).

Despite the antidepressant effects of exercise, we have a limited

understanding of the underlying neural mechanisms by which exercise
alleviates depression. Converging evidence suggests that exercise and
antidepressant medication may alleviate depression through common
neuromolecular mechanisms [5,6], including increased expression of
neurotrophic factors (i.e., BDNF) [5,6], increased availability of ser-
otonin and norepinephrine [7], regulation of HPA-axis activity [8], and
reduced systemic inflammatory signaling [9] (see [10] for Review).
These processes influence the development of new neurons, increase
synaptic connections between neurons, and increase cerebral vascu-
lature [11,12]. Considering that exercise and antidepressant medication
may exert effects on depression through overlapping molecular path-
ways, it is possible that they also influence overlapping neural systems.
Antidepressant treatment may increase the volume of the hippocampus,
anterior cingulate, and orbitofrontal cortex, increase white matter in-
tegrity, and induce changes in functional dynamics of frontal-limbic
neural networks in depressed adults [13]. While there have been few
studies examining effects of exercise on neural systems in depressed
individuals, we may predict that exercise leads to similar neural
changes as antidepressant medication.

The goal of this review is to describe structural brain abnormalities
in depression that may also be influenced by exercise. Much of the
exercise literature we review is from studies of older adults, because the
effects of exercise on brain structure have been most studied in the
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context of aging. We expect that this review may improve our under-
standing of the biological pathways involved in both the pathophy-
siology of depression and the anti-depressant effects of exercise.

1.1. Study selection

Literature search was conducted using PubMed, Google Scholar, and
references from included studies and review articles from inception
until September 2016. To search for meta-analyses examining structural
abnormalities in depression, the following strategy was used: (“de-
press*”) AND (“MRI”) AND (“meta-analysis”) AND (“brain volume”)
OR (“brain structure”) OR (“white matter”). To search for cross-sec-
tional, longitudinal, and intervention studies examining exercise effects
on brain structure, the following strategy was used: (“exercise” OR “PA”
OR “CRF”) AND (“brain volume”) OR (“brain structure”) OR (“white
matter”).

Eligibility of articles was determined by reviewing titles and ab-
stracts. All included studies were published in English. The inclusion
criteria for the depression literature were 1) meta-analysis, 2) inclusion
of clinically depressed patients (diagnosis of MDD), and 3) use of
structural MRI data. The inclusion criteria for the exercise studies were
1) original studies (epidemiological, cross-sectional, and intervention
studies), 2) use of structural MRI data, 3) evaluation of the effect of
physical activity (PA), cardiorespiratory fitness (CRF), or exercise on
regional volumetric assessments, and 4) gray matter volume in regions
commonly linked with depression: hippocampus, anterior cingulate
cortex, prefrontal cortex, striatum, and amygdala. Meta-analyses from
the depression literature were not reviewed if they combined partici-
pants with depression and other psychiatric diagnoses (i.e., bipolar
disorder) into one group. Articles from the exercise literature were
excluded if they included patients with cognitive comorbidities (i.e.,
dementia).

1.2. Structural abnormalities in depression that may be influenced by
exercise

Regional gray matter abnormalities have been have identified in
acutely depressed adults relative to age-matched non-psychiatric con-
trol subjects in numerous meta-analytic studies [14–28]; the most re-
liable regional abnormalities identified through structural MRI studies
include the bilateral hippocampus, anterior cingulate cortex, regions
within the prefrontal cortex, striatum, and amygdala. The literature of
neuroimaging studies examining structural abnormalities in depression
is vast and has been reviewed extensively; therefore, only meta-analytic
studies and reviews will be described here.

1.3. Hippocampus

The hippocampus is one of the most studied brain regions in the
context of depression. The hippocampus plays an important role in
stress regulation, as it exerts inhibitory control over HPA-axis activity,
and is also more broadly involved in cognitive and affective processing
via its widespread connections with other limbic and prefrontal regions
[29]. Reduced hippocampal volume has been consistently shown to be
about 5% smaller in depression [15–17,19,21–23,25]. Interestingly,
these meta-analyses indicate that reductions in hippocampal volume
are present throughout the lifespan [26], not explained by comorbid
psychiatric comorbidities [19], and are not solely a consequence of
medication-effects [25]. A recent meta-analysis (N = 1728 depressed;
N = 7199 control subjects) [16] confirmed that depression was asso-
ciated with smaller hippocampal volumes with larger reductions for
those with an early age of onset (< 21 years). Given that early onset
depression increases the risk for recurrent depressive episodes, it is
possible that volumetric reductions in the hippocampus may persist
even after remission and may increase vulnerability for further volu-
metric reductions during subsequent episodes.

There may be several factors that moderate the association between
depression and hippocampal volume. For example, in the context of
chronic stress dysregulation, lower hippocampal volume may represent
a risk marker, rather than a consequence, of depression [15,30,31].
However, some meta-analyses suggest that hippocampal differences
exist only in the context of chronic or recurrent depression [16,23], or
among individuals experiencing their first depressive episode [15]. This
may indicate that the studies included in these meta-analyses may re-
present different subgroups of depressed individuals that modify the
effects of depression on hippocampal volume. For instance, variability
in depression severity, age-of-onset of the first depressive episode,
Alzheimer's disease pathology in older adults, or lifestyle factors (e.g.,
physical activity) may influence hippocampal volumetric reductions in
depressed individuals. Nonetheless, reductions in hippocampal volume
are a robust structural marker observed in depression.

1.4. Exercise effects on hippocampal volume

The association between fitness or exercise and hippocampal vo-
lume is a highly replicated finding (see Table 2). In cognitively and
psychiatrically healthy older adults, Erickson et al. [32] found that
higher CRF was associated with larger hippocampal volumes. CRF re-
fers to an individual's aerobic capacity, and is commonly used in this
literature as a proxy for physical activity habits over a prolonged period
of time (also see [33,34]). Another cross-sectional study in older adults
found that high levels of exercise engagement may mitigate the cu-
mulative adverse effects of lifetime stress on hippocampal volume in

Table 1
Comparison of short-term effectiveness of various treatments for depression.

Treatment modality Meta-analysis Effect Size Pros Cons

Cognitive behavioral therapy (CBT) [91] 0.71 (0.62–0.79) Evidence-based treatments:
CBT, BA, and IPT

❖ Learn emotion regulation skills
❖ Long-term effects
❖ Clinician support

Requires:

❖ Access to a skilled practitioner
❖ Psychological mindedness
❖ Regular participation

Behavioral activation (BA) [92] 0.74 (0.31–1.17)

Interpersonal psychotherapy (IPT) [93] 0.63 (0.36–0.90)
Pharmacotherapy [94] 0.49 (0.32–0.67) Common classes: SSRIs, SNRIs

❖ Easy to administer
❖ Effective for severe depression
❖ Little motivation required

❖ Side effects
❖ Poor treatment adherence
❖ Does not reduce risk of future depressive episodes

Exercise [4] 0.62 (0.42–0.81) ❖ Cost-effective
❖ Easy to administer
❖ Improves overall health

❖ Requires prolonged motivation
❖ Appropriateness determined by health-related factors
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late life [35]. Unfortunately, studies examining these associations in
mid-life and young adulthood are rare [36]. Similar effects have been
found longitudinally. For example, in one study, self-reported physical
activity (PA), measured by how many blocks an individual walks on
average per week were predictive of greater hippocampal volume nine
years later [37].

Several randomized exercise interventions have detected increases
in hippocampal volume [36,37] or other markers of hippocampal
morphology [38,39] in healthy older adults. For instance, Erickson
et al. [36] showed that 12-months of moderate intensity aerobic ex-
ercise (brisk walking) 3×/week (N = 60) resulted in a ~2% increase
in hippocampal volume [40]. Regional specificity of these effects was
also observed, such that volumetric increases were specific to the
anterior hippocampus with little effect in the posterior region. The
anterior region has been linked to emotional and motivational func-
tioning [41] and neurogenesis [42]. In addition, exercise-induced im-
provements in CRF (~7.8%) positively correlated with increases in
hippocampal volume. These findings support the capacity for aerobic PA
to induce volumetric increases in the hippocampus in older adults.
Another intervention in younger adults (mean age = 33.7; SD = 11.9)
using a cross-over design found that 6 weeks of aerobic training for
5 days a week, 30 min each day, was sufficient to increase hippocampal
volume [43]. They also found that hippocampal volume returned to
baseline after 6 weeks of inactivity. These findings indicate that main-
taining aerobic activity is important to retain exercise-induced volu-
metric changes.

Other randomized exercise trials have reported stability in hippo-
campal volume after 3- and 6-month interventions, but increases in
other markers of hippocampal morphology, such as cerebral blood
volume and tissue density [38,39]. For instance, Maas et al. [38] ex-
amined the effects of a 3-month aerobic exercise intervention on cere-
bral blood volume and hippocampal volume in older adults (N = 40).
They found that change in CRF (~10.4%) was related to change in
cerebral blood volume (also see [44]). Similar to Erickson et al. [36],
change in CRF was related to increased volume of the hippocampal
head. These data point to vascular plasticity as a potential mechanism
for exercise effects on hippocampal volume. Another randomized trial
in older adults (N = 52) examined tissue density of the hippocampus
and reported that 6-months of aerobic exercise increased regional tissue
density [39].

To date, one study has tested the effects of aerobic exercise on
hippocampal morphology in depressed adults. In a 12-week rando-
mized controlled trial [45], no changes were reported in hippocampal
volume between the exercise group (N = 41) and the active control
group (N = 38). However, these findings must be interpreted with
caution due to poor exercise adherence (mean = 30%).

Collectively, evidence from randomized controlled trials examining
exercise-effects on hippocampal volume is promising. Inconsistencies
between types and duration of exercise preclude a clear understanding
of the mechanisms underlying exercise-induced increases in hippo-
campal volume. Nonetheless, the current literature points to the pro-
mise of moderate-intensity aerobic exercise as a non-pharmaceutical
strategy to increase hippocampal volume.

1.5. Prefrontal cortex/anterior cingulate cortex

Meta-analytic reviews have documented volumetric reductions in
several prefrontal cortical (PFC) regions in depressed individuals re-
lative to healthy control subjects, namely in the anterior cingulate
cortex (ACC) [17–20,22,24,46], orbitofrontal cortex (OFC)
[18,19,21,22], dorsolateral PFC (dlPFC) [17,25], and dorsomedial PFC
(dmPFC) [17,24]. The ACC is a medial prefrontal cortical structure. The
dorsal ACC has been implicated in higher-level executive and motor
functions, the subgenual ACC in emotional and interoceptive proces-
sing, and the pregenual ACC integrates cognitive and emotional in-
formation [47]. The subgenual ACC is a key region implicated inTa
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depression [48]. Several meta-analyses have found that volumetric re-
duction in the ACC is the largest effect size for any structural difference
in depression (Cohen's d = −0.77 p= 0.006) [18,22].

Similar to results on the hippocampus, there have been incon-
sistencies regarding clinical moderators of volumetric reductions in the
ACC. Medication may influence ACC volume [18], but see [25]. Some
evidence suggests that the effects may be most pronounced in the
subgenual region of the ACC, which is important for affective proces-
sing [18,49]. Similar to findings of the hippocampus, abnormalities in
the ACC may precede the onset of depression and may persist after
remission from a depressive episode, suggesting that volume reductions
in the ACC may represent a neurodevelopmental biomarker of risk for
depression [49].

Volumetric reductions in other prefrontal regions have also been
observed in depressed individuals relative to healthy controls. Reduced
volume of the OFC, which is involved in emotion and reward proces-
sing, is consistently observed in depression. Several meta-analyses re-
ported volumetric reductions in the OFC [18,19,21,22]. Some evidence
suggests volumetric reductions in the dlPFC and dmPFC may be linked
to depression [17,24,25]. The dlPFC and dmPFC are both implicated in
executive control, and are involved in monitoring performance and
adjusting behavior, respectively [50]. Volume reductions in dlPFC were
reported in a meta-analysis of studies only including unmedicated de-
pressed individuals, suggesting that these volume reductions are not an
artifact of antidepressant treatment [25]. Two meta-analyses of volu-
metric differences in individuals with late-life depression relative to
healthy controls also reported volumetric reductions in prefrontal re-
gions, including the OFC, medial PFC, and subcallosal cingulate cortex
[26] [27]. In sum, converging evidence of reduced volume in several
PFC regions suggests that structural abnormalities in the PFC may be a
neural signature of depression.

1.6. Exercise effects on PFC and ACC

Cross-sectional evidence supports a positive association between
CRF, PA, and PFC volume (see Table 2). These regions include dorsal
[51,52], ventral [53], and lateral PFC [52,54,55], as well as ACC
[53–55]. Several studies found evidence of a positive association be-
tween CRF and subgenual ACC volume [53,55] as well as PFC volume
even after accounting for age-related atrophy [51,54,55]. At least one
study found that higher CRF offsets age-related atrophy of the PFC [56].
One longitudinal study (N = 75) found greater self-reported PA in
midlife to be associated with greater PFC volume in late life [57].
Greater self-reported PA also predicted greater PFC volume nine years
later [37]. These findings suggest potential long-term benefits of PA for
PFC volume.

Two 6-month randomized controlled interventions found PA-related
changes in PFC and ACC volume. Colcombe et al. [58] found that a 6-
month brisk walking intervention resulted in increased volume of PFC
and ACC. Another 6-month randomized trial (N = 62) also reported
increases in PFC and ACC volume [59]. Interestingly, they found that
change in self-reported PA from pre- to post-intervention was positively
associated with increased PFC and ACC volume. Findings from both
studies suggest that increased PA for at least 6 months in older adults
may lead to increases in PFC and ACC volume. Given that volumetric
reductions in PFC and ACC constitute a central component of both
depression and executive impairment, which typically co-occur in late-
life depression (LLD), these results suggest that PA may modify neural
abnormalities relevant for LLD.

1.7. Striatum

Volumetric reductions in the striatum in depression have been
documented in several meta-analytic studies [18,21,22,46]. The
striatum is a subcortical structure consisting of the caudate and pu-
tamen subnuclei, as well as the nucleus accumbens, and is divided into

functionally distinct regions involved in executive function, affective
processing, motivation, and motor functions [60]. Segments of the
striatum are critically involved in affective and reward processing;
however, neuroimaging studies examining volumetric reductions in the
striatum in depression have not examined sub-regions within the
striatum involved in mood and motivation.

Similar to other regions discussed in this review, there may be
several moderators of volumetric abnormalities in the striatum. One
meta-analysis suggested that volumetric reductions in the striatum may
distinguish individuals with unipolar depression from those with bi-
polar disorder [22]. Another found that age moderates striatal volume
in depression, such that the reduction in volume is greater in late-life
rather than mid-life [18]. Interestingly, a meta-analysis examining
structural abnormalities in un-medicated depressed individuals relative
to healthy controls did not report striatal abnormalities [25]. Evidence
of volumetric reductions in the striatum in depression was not sup-
ported by recent whole-brain meta-analyses. This may partially be ex-
plained by moderating effects of age and clinical factors described
above.

1.8. Effects of PA and CRF on striatum

PA and CRF associations with the striatum are limited, with only
one cross-sectional report supporting a positive association. In healthy
older adults, a link was observed between higher CRF levels and volume
in the caudate (dorsal) and nucleus accumbens (ventral), but not the
putamen [61]. Given that the ventral striatum shows structural and
functional alterations in depression and parts of the dorsal striatum are
implicated in mood and motivation, these findings, suggest that CRF
and PA may relate to volume of striatal nuclei that may have particular
relevance to depression. One intervention study in older adults showing
exercise-related increases in hippocampal volume found no effects of
the intervention on caudate nucleus volume [36].

1.9. White matter

Reduced microstructural integrity of white matter (FA) has been
linked to depression in several meta-analyses, with inconsistencies re-
garding tract- or regional specificity of the effects [62–64]. Two meta-
analyses [62,63] found reduced FA in the corpus callosum, one re-
ported reduced FA in the left superior longitudinal fasiculus [62], and
one reported widespread reductions in FA in the prefrontal cortex
(dlPFC), as well as tracts connecting PFC regions to subcortical, tem-
poral, parietal, and occipital regions in depression [63]. One meta-
analysis in LLD (N = 15) found lower FA in the uncinate fasiculus
among depressed older adults, a tract that facilitates communication
between inferior frontal (i.e., OFC) and limbic regions (i.e., amygdala,
hippocampus) [65]. These results suggest diffuse reductions in struc-
tural connectivity in depression.

1.10. Exercise effects on white matter integrity

Twelve cross-sectional studies have examined the association be-
tween PA (N = 3) or CRF (N = 9) and FA in cognitively healthy adults.
Eleven out of twelve studies found significant associations between PA
or CRF and FA. The majority of these studies were in older adults
(N = 11). Among studies in healthy older adults, CRF or PA was con-
sistently associated with FA in the corpus callosum (N = 4), the cin-
gulum (N = 6), and superior longitudinal fasiculus (N = 3) (SLF)
[66–68]. The corpus callosum is critical for interhemispheric commu-
nication, and the cingulum facilitates communication between sub-re-
gions of the cingulate cortex, as well as between ACC and other limbic
regions. Given the importance of the ACC in depression, associations
between CRF and the cingulum may have profound implications for
depressed individuals (Table 3).

One cross-sectional study examined the association between CRF
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and FA in two samples of older adults (N = 113; N = 154) [67]. This
study confirmed earlier findings of positive CRF associations with FA in
the cingulum [68–72] and corpus callosum [72–74], and also showed
CRF associations with FA in other WM tracts. Additionally, FA in re-
gions within these WM tracts partially mediated the link between CRF
and spatial working memory, an executive function that is often im-
paired in depressed individuals [75].

Three studies have examined CRF or PA associations with FA in
younger samples [70,74,76] (see Table 3). They found that CRF asso-
ciations with FA in some tracts were similar across high fit older and
younger adults, whereas CRF associations with FA in other tracts were
only significant in older adults [74]. Another study examined the as-
sociation between PA and FA of projections from the hippocampus, and
did not find a link between PA and FA. Key limitations within this lit-
erature include a large number of studies with small sample sizes, and
some studies including samples having vascular conditions.

A longitudinal study examined the association between self-re-
ported PA and global FA 3-years later, in a sample of older adults
(N = 691) [77] and found that PA, but not leisure time activity, was
associated with global FA after 3 years, after accounting for age, sex, IQ,
and socioeconomic status. However, this effect did not remain after
covarying for vascular disease burden (cardiovascular disease, stroke,
and hypertension), pointing to the important role of vascular factors in
WM integrity.

One randomized controlled trial in healthy older adults examined
changes in FA after a 1-year exercise intervention [78]. There were no
group differences observed in FA between the training groups. How-
ever, within the aerobic exercise group, change in CRF was positively
associated with change in FA in the prefrontal and temporal lobes.
Another 6-month trial compared the effects of an aerobic exercise in-
tervention (cycling) on FA in healthy young adults and individuals with
schizophrenia. They found that regardless of psychiatric diagnosis, the
aerobic exercise intervention increased FA in the corpus callosum, SLF,
and corticospinal tract [79].

This review was limited to exercise effects on white matter micro-
structure due to its overlap with the meta-analytic literature in de-
pression-related white matter abnormalities. However, evidence also
suggests exercise may lead to macro-structural changes in white matter,
including reductions in white matter lesions and increases in white
matter volume (see [80] for a detailed review). For instance, results
from the Look – AHEAD trial suggests that a 10-year lifestyle inter-
vention involving physical activity prevents the development of white
matter lesions in adults with Type II diabetes, which often clusters with
depressive symptoms [81]. Further, given the high prevalence of white
matter lesions in LLD, this may be an important mechanism through
which exercise may influence depression in late-life [82].

2. Discussion

Meta-analyses of depressed adults have identified volumetric re-
ductions in the hippocampus, ACC, PFC, striatum, and reduced micro-
structural integrity of white matter in the rostral corpus callosum and
inferior parietal segments of the SLF (see Table 2). In contrast, higher
CRF and PA have been linked to greater gray matter volume in the
hippocampus, PFC, and ACC in cross-sectional and longitudinal studies
in healthy adults. Experimental evidence from randomized trials also
supports exercise-induced increases in hippocampal, PFC, and ACC vo-
lume. Yet, not all regions implicated in depression appear to be posi-
tively affected by PA (i.e., striatum). White matter structure may also be
affected by CRF and PA in the corpus callosum and the cingulum, al-
though the paucity of intervention studies and heterogeneity of study
designs prevent firm conclusions.

2.1. Broader Implications

This review identified several regions that show consistent volu-
metric reductions in depression. Yet, many of these regions also show
structural plasticity in response to exercise or in relation to higher levels
of fitness. These regions include the hippocampus, ACC, and the PFC
(see Fig. 1). We speculate that it is partially through these neural vo-
lumetric pathways that exercise exerts its anti-depressant effects. Spe-
cific mechanisms by which exercise leads to these regional volumetric
changes are still uncertain, but could include a number of downstream
effects of exercise on cell proliferation, creation of new vasculature,
expression of neurotransmitters, and changes in HPA-axis activity
[83,84]. As we have seen, exercise and antidepressant medication not
only trigger similar neuromolecular changes, but also have overlapping
regional effects on brain structure [13]. This overlap supports the
possibility that volumetric increases in these regions mediate exercise-
related reductions in depression (see Fig. 1).

Exercise may also influence white matter connectivity. The most
consistent exercise associations have been shown in the genu and body
of the corpus callosum, suggesting that exercise may broadly improve
deficits in interhemispheric communication (see Fig. 1). Further, ex-
ercise has been associated with improved integrity of the cingulum, a
key tract involved in ACC-hippocampal communication (see Fig. 1).

Given that the majority of evidence of exercise on brain structure is
based on older adults, these effects may be particularly relevant for the
treatment of LLD. Exercise may be a particularly favorable treatment
for depressed older adults because its neural benefits may be heigh-
tened in this population undergoing age-related atrophy that is ex-
acerbated by LLD-related neuropathology (i.e. white matter lesions).
Specifically exercise may reduce atrophy, reduce white matter lesion
burden, and improve cognitive function in those with LLD. Moreover,
there is a greater need for non-pharmaceutical treatments for depres-
sion in late-life, due to limited efficacy of pharmaceutical treatments in
this population. Finally, older adults, among other populations, tend to
be less physically fit, and thus may show greater changes in fitness after
starting to exercise. These potentially robust changes in fitness may
translate to greater neural benefits.

Depressed individuals are often less active, suggesting that in-
centives or motivational factors for initiating and maintaining exercise
must be considered (i.e., structured programs in groups). Also, de-
pressed individuals may perceive enrolling in a psychotherapy treat-
ment trial that may be augmented with exercise as more feasible and
rewarding than initiating an independent exercise program. A recent
meta-analysis examining moderators of the antidepressant effects of
exercise found that various constellations of biological, clinical, psy-
chological, and social factors can influence exercise effects on depres-
sion, including the presence of somatic symptoms, comorbid anxiety,
self-esteem, social support, as well as circulating levels of neurotrophic
factors (BDNF) and inflammatory markers (TNFα) [85]. Specifically,
BDNF may be a key mediator of exercise effects on structural brain

Fig. 1. Overall exercise associations with gray matter and white matter; these regions and
tracts may be targeted in exercise-based treatments for depression.
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markers of depression, given its role in both the etiology of depression
and exercise-induced increases in hippocampal volume [11,12]. Animal
studies support the hypothesis that exercise relieves depressive symp-
toms by acting through BDNF pathways, although this has yet to be
fully tested [5,6].

2.2. Limitations

Several limitations should be considered here. Most importantly, the
studies examining associations between exercise and regional gray
matter volume and white matter integrity were not tested in depressed
individuals. Therefore, they do not provide direct evidence of a me-
chanism, but suggest possible mechanisms through which exercise al-
leviates depression. Another notable limitation is the exclusion of stu-
dies examining brain function. We chose here to focus on volumetric
and morphology studies because there is little overlap in the functional
neuroimaging paradigms used in the depression and exercise litera-
tures. Additionally, the number of studies and age groups examined
differs greatly between the exercise and depression literatures. The
exercise neuroimaging literature also includes a limited number of
randomized interventions, precluding definitive conclusions about ex-
ercise-induced changes in brain structure. Finally, given that depression
is a heterogeneous syndrome linked to several etiological factors that
may influence these brain abnormalities, it remains unclear the extent
to which these abnormalities would improve with various treatments,
including exercise.

2.3. Future directions and clinical implications

This review highlights a need to test whether changes to brain
structure mediate the antidepressant properties of exercise, and the
extent to which these effects may be age-dependent. Further, mod-
erators should also be explored, such as genetic factors, environmental
stress, medical illness burden, antidepressant medication use, and se-
verity and duration of depressive episodes. Also, given emerging evi-
dence that structural brain abnormalities may serve as a biomarker of
risk [86–88], PA may have important clinical and neuroprotective ef-
fects on the risk for depression [89]. In fact, individuals at risk for
depression may prefer lifestyle modification to taking medication or
psychotherapy. Therefore, future preventive interventions could ex-
plore neural mechanisms underlying the effects of PA on risk for de-
pression. Finally, this field would benefit from a multi-level char-
acterization of exercise on depression, cutting across molecular
pathways, neural systems, and clinical symptoms in depressed in-
dividuals.

3. Conclusion

Exercise is a viable non-pharmaceutical treatment for depression.
The benefits of exercise may also persist beyond the end of treatment,
unlike antidepressant medication [4,90]. It is critical for future studies
to test whether the brain regions identified in this review may be
neurobiological markers of depression that may serve as targets for
exercise-based treatments for depression.
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